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Introduction

The development of quantum theory during the 20oth century led to the in-
troduction of completely new concepts to physics. At the same time, physi-
cists were forced — sometimes unwillingly — to adopt myriad new techniques
and mathematical ideas. In this course, we’ll survey some of these more
advanced topics.

This course is recommended only for students who have achieved a
strong performance in Mathematics as well as Physics in Part IB, or an
equivalent qualification.

Outline of lectures
Topics in italics are non-examinable.

1. Quantum Dynamics [3 lectures]
Schrodinger, Heisenberg, interaction picture. The evolution operator and
time ordering. Driven oscillator. Coherent states. A spin-% in a field. The
adiabatic approximation. Landau-Zehner transitions. Berry’s phase.

2. Introduction to path integrals [1 lecture]
The propagator and the Green’s function: free particle and harmonic
oscillator. The method of stationary phase and the semiclassical limit.

3. Scattering Theory [3 lectures]
Scattering in one dimension. Scattering amplitude and cross section.
Optical theorem. Lippmann-Schwinger equation. Born series. Partial
wave analysis. Bound states.

4. Density Matrices [2 lectures]
Density matrix and its properties. Applications in statistical mechanics.
Density operator for subsystems and entanglement. Quantum damping.

5. Identical Particles in Quantum Mechanics [4 lectures]
Second quantisation for bosons and fermions. Single-particle density
matrix and density-density correlation function. Bose-Hubbard model.
Bogoliubov transformation. Interference of condensates.

6. Lie Groups [2 lectures]
Symmetries are groups. Lie algebra of generators. Rotations as Lie group.
Representations of SO(3), SU(2), Lorentz group SO(1,3) and SL(2,C).

7. Relativistic Quantum Physics [1 lecture]

Klein-Gordon equation. Antiparticles. Spinors and the Dirac equation.
Relativistic covariance.
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Books

A few good books at about the right level:

e JJ Sakurai, Modern Quantum Mechanics, 2nd edition, Addison-Wesley, 1994.

* F Schwabl, Quantum Mechanics, 4th edition, Springer 2007, and F Schwabl,
Advanced Quantum Mechanics, 4th edition, Springer 2008.

* R Shankar Principles of Quantum Mechanics, 2nd edition, Springer 1994.

e G Baym, Lectures on Quantum Mechanics, W. A. Benjamin, 1969.

For more problems that you can shake a stick at, see the recently pub-
lished Exploring Quantum Mechanics (CUP, 2013) by Galitski et al.. Remember
that doing problems is the only way to cement your understanding of new
concepts!

For mathematical background I'd heartily recommend Mike Stone and
Paul Goldbart’'s Mathematics for Physicists: A guided tour for graduate students
(CUP, 2009). This contains a lot of advanced material as well as much of
what you covered in 1B Mathematics.

A great resource for just about anything you may need to know about any
of the functions we meet is the NIST Digital Library of Mathematical Functions
at http://dlmf.nist.gov.

Structure of these lectures

You will find problems embedded in the text. Most of these are relatively
short, and often involve checking expressions, or working through omitted
steps. They are therefore a vital part of the development. It’s probably best
to work through these immediately after (or during!) the lectures, and make
a note of any points you don’t understand for the examples classes.

TANGENT Occasionally, you will see boxes of indented text like this. They in-
dicate background material that is not on the syllabus, but which you may find
interesting. You definitely don’t need to know anything that appears in one of
these comments (except this one). Some of these contain problems. Again, they are

just for added interest. The same applies to the Appendices to Chapter 3.

You are strongly encouraged, however, to immediately work through the
problems in Appendix A to improve your facility with the manipulation of
operators. If you find this process excruciatingly painful, this may not be the
course for you!

THIs COURSE naturally builds on the Advanced Quantum Physics course
from Michaelmas, so I'll sometimes refer back to these lectures with the
abbreviation AQP.


http://dlmf.nist.gov

1
Quantum Dynamics

In this first chapter we’re going to introduce some general ideas of quantum
dynamics, using the two simplest quantum systems: the harmonic oscillator
and a single spin-1/2.

1.1 The Quantum Harmonic Oscillator

There’s an old crack from the late quantum field theorist Sidney Coleman to
the effect that

The career of a young theoretical physicist consists of treating the harmonic
oscillator in ever-increasing levels of abstraction.

There’s a large kernel of truth in this, for the simple reason that many sys-
tems in physics vibrate, from bridges to quantum fields, and within a certain
approximation that vibration can be treated as harmonic. In this section we
are going to remind ourselves about some features of quantum dynamics us-
ing this model as our basic example, as it allows most results to be expressed
analytically. Along the way I'll try and point out which features generalise to
more complicated systems (and which don’t!).

Time independent case

The Hamiltonian is
P> 1
H = o + Emwzxz, (1.1)

where the position and momentum operators satisfy

[x, p] = ih.

The state of the oscillator |¢) evolves in time according to the (time depen-
dent) Schrodinger equation

o l) = Hy). (12)

This is a first order differential equation, and so the evolution is fixed once
the initial state |¢(0)) is specified. We can write the solution as

() = exp (—iHt/T) [$(0)) = U(t) [¢(0)) . (1.3)

The operator U(t) = e /7 is called the evolution operator, as it evolves the
state |(0)) forward in time.
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Functions of operators can be thought of as defined by their power series
expansions, in this case

Ht 1 (Ht\?
U(t):]l—zht—z(ht> +e (1.4)

Alternatively, if an operator has a complete orthonormal eigenbasis |1) (as
quantum observables do, being Hermitian operators), we can write any
such function in terms of this basis and the corresponding function of the
eigenvalues E;,

ut) =y e ™" |n) (n]. (1.5)

This latter point of view then focuses attention on the eigenstates |1). To
find these there are at least two approaches

1. (Brute force) Take the position representation p = —ih% and study the
time independent Schrodinger equation in this representation

ndp, 1 5 5
“om A2 + Emw x“Py = Eqpy (1.6)

where (x|n) = ¢, (x). The result is that the eigenfunctions have the form

1 1/4 2
Pu(x) = eI (%) e mwxt /2y (\/ ﬂ;lwx) (1.7)

with eigenvalues E, = hw(n + 1/2), where H,(z) are the Hermite polyno-

mials

2. (More sophisticated) Define the hermitian conjugate pair

a:@(H%)

(1.8)
U Ly PV
“ T\ 2n (x lmw) ’
which satisfy
[a,a'] = 1. (1.9)
The Hamiltonian is expressed as
h
H= Ta) [a+a + aaq =hw(N +1/2) (1.10)
where N = a'a. The commutation relation Eq. (1.9) implies
[N,a] = —a [N,a'] = +af, (1.11)

which in turn tells us that acting with a' () on an eigenstate |n)of N
with eigenvalue n gives another eigenstate with eigenvalue increased
(decreased) by 1.

Alternatively, we can try and find U(t) indirectly, from the effect it has
on operators. Recall that in the Heisenberg picture operators acquire a time
dependence
o(t) = ut(ryou(r), (1.12)

equivalent to the Heisenberg equation of motion

o) _ i

T [H, O(t)]. (1.13)
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Let’s see what this means for the Harmonic oscillator. Evidently H =
ut(t)HU(t), so

H=U'(t)HU(t) = P(22 + —mw?x(t)2. (1.14)

We have

~ L) = 20

D — L1, p(0)] = —mex(

(1.15)

You may recognize these equations as identical to Hamilton’s equations for the
SHO

dx oH p

dat — op m
dp E)H_i 5
i mw-x

(1.16)

Problem 1.1

Convince yourself that the same correspondence holds for the more
general Hamiltonian
H="T(p)+ V() (1.17)

The general solution is

x(t) = cos(wt)x(0) + sin(wf)% (1.18)

p(t) = cos(wt)p(0) — mw sin(wt)x(0),

and corresponds to a point tracing out an ellipical trajectory centred at the
origin in the x — p plane (phase space). From this point of view the operators
a, a’ in Eq. (1.8) can be seen as complex amplitudes whose phase changes
linearly in time

a(t) = e “qa(0),  a'(t) = et (0). (1.19)

Problem 1.2

Verify that Eq. (1.19) follows directly from Eq. (1.1) and the commuta-
tion relation Eq. (1.9).

Time dependent force

Mostly we don’t leave quantum systems to get on with their own time evo-
lution, but disturb them in some way. For example, an atom may experience
an external radiation field. The prototype for this situation is the SHO sub-

ject to a time dependent force Recall that in the Heisenberg picture
the Hamiltonian remained time in-
P2 1 dependent. Now it has intrinsic time

H(t) = o + Emu}2x2 — F(#)x. (1.20) dependence

9
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How does such a system evolve? The important thing to realize is that the
solution of the Schrédinger equation

in - l) = H(O)[y). (1.21)

is not
U(t) # exp (—iH(t)t/h). (1.22)

Let’s consider the situation described by

FF 0<t<Hh
F(t) = . (1.23)
E H1<t<hb
The evolution operator is
Ul(t) 0<t<th
u(t) = (1.24)
uZ(t*tl)ul(fl) h<t<t

. 2
where U;(t) = e tHit/h and H; = f—m + %mwzxz — Fix. It’s important to realize
that Hy and Hy don’t commute with each other

[Hl,Hz] = —ih%(Fl — Fz), (1.25)

thus U; and U, don’t commute and the product of Uj and U, in Eq. (1.24) is
not easily written in terms of a single exponential.

The evolution operator corresponding to a general force F(t) can be un-
derstood by splitting the evolution up into many small stages

U(E) = lim e HI=OOM/ M= iH(E=280A /1 o= iH(A) A/ = iH(0)A/ 1

At—0
= tim (1- iH(t — At)At 1 iH(t — 2At)At (- iH(0)At
At—0 I h h
i rt 1 ot ty
:1—7/ dtlH(tl)——z/ dt2/ diy H(t)H(t) + . ...
h Jo n= Jo 0
(1.26)

Note that the time arguments of H(t) are increasing from right to left. The
final expression for U(f) can be written in a dangerously compact fashion by
using the notation

_JH(t)H(t) t=t s
TIH(t)H(f2)] = {H(tz)H(tl) bt (1.27)

and so on. The operation denoted by 7 is usually called time ordering. We
have

it 1 ot t
U(t):l—%/o dt H(t1)—ﬁ/0 dt2/0 dty TIH(H)H ()] + ... (1.28)

Allowing the integrals to range over 0 < t; < t instead of ordering them
necessitates the introduction of a factor % at the nth order. This allows us to
write

U(t) =T exp (—;1 /(: dt’H(t’)) (1.29)



This expression should be handled with extreme care! It evidently reduces to
e~'H!/1 in the case of a time-independent Hamiltonian. In the general case, it
is only really useful in the form of the expansion Eq. (1.28).

To make progress in the case of the driven oscillator, it’s useful to once

again consider the Heisenberg equations of motion

p .
. 1.30
d%” = %[H,p(t)] = —ma?x(t) + E(t).
In terms of a and a*
H(t) = %w (a+a + aa+) — F(f) ZrZw (a+a"), (1.31)

and we have

da 1
“wo_ iF()\ ] —— 1.32
i icwa + iF(t) e (1.32)

If we define a(t) = e™“*a(t), we get

di F(t)e!
dt 2mhw’ (133)
with general solution
i t ot
”t:~0—|—7/1:t’ whay, .
() =a(0) + = [[F(t)e (139
and similarly
ity = gt i /t 1 p—icwt’ 41
t) = 0) — — [ F(t dat'. .
#(0) = a(0) ~ = [[Ft)e (1:35)

Problem 1.3

Satisfy yourself that this corresponds to the classical solution of a forced
oscillator.

What can we do with this solution? Suppose we start from the ground state,
which satisfies

a]0) =0. (1.36)
Since a(t) = UT(t)al(t) we have all(t) = U(t)a(t) and thus
i £ ot
ali(t) |0) = | E@Et aruce) o), 1.

(£)10) \/Wo() (£)10) (1.37)

we have that U(t) |0) is an eigenstate of 4(0) = a with eigenvalue

i £ e

— = | F(ew'Day, 1.38
e | F() (1.38)

in other words, it is a coherent state. Recall from AQP that a coherent state |«)
is defined as an eigenstate of a with eigenvalue « (generally complex, as a is
not Hermitian)

ale) =ala). (1-39)
The explicit form of a normalized coherent state is
la) = e |?/2p0a" 0), (1.40)

where both the property Eq. (1.39) and the normalization follow from the
fundamental commutator [a,at] = 1.

THEORETICAL PHYSICS II

11
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Two state systems abound in physics.
Or rather, many physical situations can
be approximated by considering only
two states. Some important examples
are the spin states of the electron, a
pair of atomic states coupled by exter-
nal radiation, and the two equivalent
positions of the Nitrogen atom in the
trigonal pyramid structure of Ammo-
nia (NHy). Quantum two state systems
are central to the field of quantum
computing, where they replace the
classical bit of information and are
often known as qubits.

Problem 1.4

Prove this.

Note that the ground state |0) is a coherent state with a = 0.

Problem 1.5

Show that if we start in a coherent state |a), then after time  we are in
the state
u(t) a) = €9 |a) (1.41)

where

o =a+ F()e ! at’. (1.42)

i t
V2mhw /0
Find the form of the phase ¢(t).

Problem 1.6

Verify that the result Eq. (1.38) is consistent with first order time de-
pendent perturbation theory for the amplitude to transition to the first
excited state.

1.2 A Spin in a Field

The simplest quantum system we can write down consists of just two states.
The Hilbert space is then two dimensional, and any operator can be thought
of as a 2 x 2 matrix. In this section, we'll see that there is a lot to be learnt
from this seemingly elementary problem.

It’s convenient to describe such a system using the language of spin-1/2,
even though the two states may have nothing to do with real spin. The most
general time dependent Hamiltonian can then be written using the spin-1/2
operators S; = %0’1' as

H(t) = H(t) - S, (1.43)

in terms of a time dependent ‘magnetic field” H(t) (that again may have
nothing to do with a real magnetic field). Using the Pauli matrices, we have
the explicit form

1 H,(t) Hy(t) — iHy(t)
H() =5 (Hx(t) ViH(1)  —Hi() ) (1.44)
The Schrodinger equation corresponding to Eq. (1.43) is
LAY
im0 ey ) (145)

where |¥) = iT .
1

As before, the formal solution to Eq. (1.45) can be written as

[¥(1) =U(tt) [¥(t)), (1.46)



In the present case, U(t,t') is a 2 X 2 unitary matrix. It's perhaps a bit sur-
prising that, for this most basic of all possible problems of quantum dynam-
ics, there is no simple relationship between H(t) and U(t,t'). If we think of
U(t,t') as representing a kind of rotation in Hilbert space, H(t) corresponds
to an instantaneous ‘angular velocity” describing an infinitesimal rotation.
Because these rotations do not commute at different times, the relationship
between the infinitesimal rotations and the finite rotation that results is com-
plicated.

The same picture emerges if we look at the Heisenberg equation of mo-
tion for S(t) = U'(t,t)S(+)U(t,t'), which take the form

ds i
ar = A0S (147)
=nhTH(t) x S,

by virtue of the spin commutation relations [Si, S]-} = ig;jSk. Thus S pre-
cesses about H(t), which corresponds to the instantaneous angular velocity.
Differential equations involving operators may make you uncomfortable, but
this one is linear and first order, so the solution must be expressible in the
form of a matrix connecting the initial and final operators

S(t) = R(t,t')S(t). (1.48)

Ris a 3 x 3 matrix describing the rotation of the spin from time #' to time t.
The formal expression for R(t,t') is

R(t,t') = T exp (/;Q(ti) dti> . (1.49)

where the matrix Q(t) describing infinitesimal rotations has elements
ij(t) = *FlHi(t)Eijk i.e.

0 —H:(t)  Hy(t)
Q(t)y=nr"1| Hy(t) 0 —H, (1) | . (1.50)
—Hy(t) Hy(t) 0

U(t,t') and R(t, ') contain the same information, of course. We’ll return to
the relationship between these two in Chapter 6 on Lie Groups.

Problem 1.7

Find the explicit form of U(t,#') and R(t,#') when H = H2, correspond-
ing to uniform precession about the z-axis.

Rabi oscillations

One time dependent situation that we can describe exactly is the rotating
field

Hg cos(wt)
H(t) = | Hgsin(wt) |, (1.51)
Hy
corresponding to the Hamiltonian
H , ,
H(t) = HoS: + = (s+e*’wf + s_elwf) ) (1.52)

THEORETICAL PHYSICS II

The usual 7 is missing because we
defined S = 1o

I'll try to stick to the convention of
denoting matrices by sans serif fonts
like THIS.

13
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The Born-Oppenheimer approxima-
tion (AQP) is another example.

where S+ = Sy £iS,. The key to solving the problem is to transform the
Schrodinger equation Eq. (1.45) by multiplying by exp (iwtS;). Define

[¥r(t)) = exp (iwtS;) [Y(t)) . (1.53)
This transformed state satisfies
. a o d
ll"lﬁ [¥r) = zhelwtslﬁ ['¥) — hwS; [¥R)
= e “IS:H(t) [¥) — hwS, [¥R)

, , (1.54)
= IS H(H)e ™9 ¥R — hwS, [YR)
= HRabi |TR)
In the last line we defined
Hgapi = €5 H(t)e @t — hwS, = (Hy — hw) S, + HRSx. (1.55)

To get the last equality you have to transform the Hamiltonian. You can use
Eq. (A.2), or, since everything is a 2 X 2 matrix, you can multiply the matrices
explicitly.

Physically, this corresponds to viewing things in a frame rotating with the
field, so the Hamiltonian is now time independent. In this new frame the
system precesses about a fixed axis (Hg,0, Hy — hiw) at the Rabi frequency

wr = 1/ (Ho — hew)? + H3. (1.56)

The amplitude of the oscillations in S, due to this precession is maximal
when Hy = 7iw. In this case the rotation frequency of the field matches the
frequency of precession about the z-axis that would occur if Hr = 0.

1.3 The adiabatic approximation

The idea of separation of scales, be they in length, time, or energy, is en-
demic in science. If we are interested in studying processes on one scale
(such as the weather, say) we hope that they don’t depend on the details of
processes at another (the motion of molecules). Rather, we hope that these
latter processes can be described in an average way, involving only a few
parameters and dynamical quantities (density, local velocity).

The adiabatic approximation is a special case of this idea. Let’s suppose
that in our two level system, the field H(t) is changing very slowly (we'll
make this idea precise in a moment). If this motion is truly glacial, we’d
expect to be able to forget about it altogether, and just solve the problem by
finding the energy eigenstates and eigenvalues in the present epoch

H(t) [+1) = Ex(8) [+4) - (1.57)

We put the t in a subscript on the states to emphasise that they depend
on time as a parameter. We refer to the |+;) as the instantaneous energy
eigenstates. Although we can always define these states for any H(t), we
have no reason in general to expect that this {-dependence has anything
to do with the other kind of t-dependence that arises by solving the time
dependent Schrodinger equation.

The adiabatic theorem is roughly the statement that these two ¢ depen-
dences do in fact coincide, in the limit that H(¢) changes very slowly. To
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make this more precise, let’s expand the state of the system, evolving in time
according to the Schrodinger equation, in the instantaneous eigenbasis

(¥ () = c(8) [+4) + - () [=1) - (1.58)

Thus, some of the t dependence is ‘carried’ by the |+;), and by substituting
into the Schrédinger equation we are going to find the time dependence of

the c+ (t ) This involves ﬁnding d ‘:Et> /dt. It’s a bit like the interaction represen-
Now the following idea you may find a bit odd. Since the time de- tation in time dependent perturbation
. . . . theory
pendence of |£¢) is parametric, we can view the problem of calculating
d|+£;) /dt as an exercise in time independent perturbation theory. Going from
t to t + 6t changes the Hamiltonian by an amount
H
SH(t) = w&t. (1.59)
dt
Treating this as a perturbation, the state |+;) changes by an amount
_ (HH(#) [+
o ) _ (SHO)
dl+)  (—¢|H(E) [+
dt ~ E((t)—E_(t) =) (1.61)
Using Eq. (1.61) and the corresponding result for d |—;) /dt, we find that
the Schrodinger equation gives the following pair of equations for the ¢+ ()
cd (e [ Ec(y ntREE Lo
ih— =\ . (B + . (1.62)
dt c_ lhﬁ Ef(t) C*(t)
If H(t) is changing slowly enough, the off-diagonal terms can be neglected
and the solution is Note the resemblance to the WKB

wavefunction, with energy and time
it N taking the roles of momentum and
cx(t) =exp | — 7 / EL(t')dt" ) c£(0). (1.63) position. WKB is a kind of adiabatic
0 approximation in space.
Thus the amplitudes evolve independently, and there are no transitions
between the instantaneous eigenstates. The phase factor is a generalization
of the familiar e "E+!/" for stationary states, which accounts for the slowing
varying instantaneous eigenenergy.
When is this approximation valid? The off-diagonal matrix element in
Eq. (1.62) must be small compared to E;(t) — Ex(t), which corresponds to the
condition
: 2
R (=4 Hl+0) | < [E+(t) = E-(1)]" (1.64)

e Degeneracy must be avoided, because the eigenbasis becomes undefined
within the degenerate subspace. You can’t remain in an eigenstate if you
don’t know what it is.

¢ The approximation is a semiclassical one, meaning that it improves at
smaller f.

TANGENT

Adiabatic is a peculiar term that appears in two related contexts in physics, both
referring to slow changes to a system. In thermodynamics, it describes changes
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Figure 1.1: The action of a periodic
trajectory is equal to the area enclosed
in the phase plane. For a simple
harmonic oscillator the curve is an
ellipse and the action is the product
of the energy and the period. If the
period of the oscillator is altered
slowly (by changing the length of a
pendulum, say) the ellipse will distort
but the area will remain fixed.

Figure 1.2: Instantaneous eigenvalues
of the Landau-Zener problem. The
dotted line schematically illustrates
what happens when we pass over the
branch point.

without a change in entropy. For reversible changes, this corresponds to no flow of
heat, which is the origin of the name (from the Greek for ‘impassable’).

Later, the idea entered mechanics when it was realized that a mechanical system
with one degree of freedom undergoing periodic motion, and subject to slow
changes, has an adiabatic invariant. This turns out to be the action

S:j{pdx

(4 indicates that we integrate for one period of the motion) Largely due to the
work of Paul Ehrenfest (1880-1933), the invariant played a major role in the ‘old’
quantum theory that predated Schrodinger, Heisenberg, et al.. If the motion of

a system is quantized, slow changes to the system’s parameters presumably do
not lead to sudden jumps. Thus the quantity that comes in quanta must be an
adiabatic invariant — and conveniently Planck’s constant has the right units. This
line of reasoning eventually gave rise to the Bohr—-Sommerfeld quantization

condition
fpdx = nh, n integer.

Landau—Zener tunnelling

The picture of adiabatic evolution described above is extremely simple, and
it’s natural to ask how it breaks down when the condition Eq. (1.64) is not
satisfied. Let’s consider time evolution with the Hamiltonian

H(t) = ('[Zt —Aﬁt> . (1.65)

The instantaneous eigenvalues are
Ei(t) = £4/(Bt)> + A% (1.66)

We denote the corresponding eigenvalues |+;). As a function of ¢, the eigen-
values show an avoided crossing. The adiabatic theorem tells us that if we
start in the state corresponding to the lower energy E_(t), and B is suffi-
ciently small, the state at time ¢t is

exp (= [ -0t ) 1), (1.67)

where |—;) is the corresponding eigenstate. We're integrating from t = 0

because the integral diverges at —co as the phase whizzes faster and faster.
How small should B be? We use the condition Eq. (1.64), and the fact that

the minimum splitting of the energy levels is 2A to arrive at the requirement

h

Aig <1 (1.68)

We are interested in the situation where this is not the case.

Problem 1.8

When Z—‘j > 1, we expect a system that starts out at in the lower state
at large negative times to end up in the upper state, with only a small
probability of remaining in the lower state. This limit can be treated
using time-dependent perturbation theory in the splitting A. Since the
unperturbed levels pass through each other, staying in the lower state
corresponds to making a transition between the unperturbed states.




Show that the corresponding probability is

TTA?

P(l— o) = | —t=c0)) = 73

(1.69)

TANGENT

In fact, we can do better than this, via an ingenious excursion into the complex
plane. The functions E+ (f) have branch cuts starting at t = +iA/f. We can think
of adiabaticity failing because the branch points are too close to the real axis.

But who said t had to be real? There is nothing to stop us integrating the
Schrodinger equation along an arbitrary contour. Then we can be as far away from
the branch points as we like (Fig. 1.3), and the adiabatic approximation should

be valid once more. We can use Eq. (1.67): the exponent now acquires a real part,
which describes the decay of the amplitude.

Having made the adiabatic approximation, we can deform the contour of inte-
gration in Eq. (1.67). The real part of the exponent arising during evolution from
t = —oo to t = +o0 can then be written

2i [id/B A?
" /O V (ﬁt)Z +A%dt = _ﬂ, (1.70)

giving the modulus of the amplitude

2
|c—(—00 — +00)| = exp (—%) . (1.71)

Note, however, that our state is now evolving with an instantaneous energy E (t),
because we passed onto the other sheet of the Riemann surface. We are now in the
upper state |+¢), see Fig. 1.2.

Thus the square of Eq. (1.71) actually gives the probability to make the transition
to the upper state. The probability to remain in the lower state is therefore

A2
Pground = 1 —exp (—W> . (1.72)

Problem 1.9

Find the eigenvectors of Eq. (1.65) explicitly and verify that going around the
branch point as shown in Fig. 1.3 takes us from |—;) to |+;)

1.4 Berry’s phase

There is a surprise lurking in our derivation of the adiabatic theorem, one
that remained hidden until 1984. We found the change in the instantaneous
eigenstates in a small interval Jt to be

(—tlsHB)|++)

S = E B

| =) - (1.60)
This change is in the direction of |—;) i.e. orthgonal to |+;). The usual jus-
tification for this in the context of perturbation theory is that any change
parallel to |+¢) is no change at all, amounting only to a modification of the
magnitude or phase of the state, neither or which is physically meaningful.
For example, a small change in the phase of |+;) gives

[+t) = €90 |44) ~ (1+66) |++) . (1.73)

THEORETICAL PHYSICS IT 17

t

inp
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Figure 1.3: (Top) Branch cuts and
contour of time evolution in the
complex t plane. (Bottom) Riemann

surface of \/(Bt) + A2

Incoherent : _Coherent
—  —

10 A:g‘“m A o? 10'
Figure 1.4: Comparison of Eq. (1.72)
with the probability of a supercon-
ducting qubit to remain in the ground
state. The two states correspond to
different values of the magnetic flux
trapped in a superconducting ring,
and the bias is provided by ramping
another flux (Johansson et al., 2009).
The original paper (Berry, 1984) is a
model of clarity and highly recom-
mended.
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Suppose now that H(t) is subject to some adiabatic cyclic change around
some closed path 7 in the space of matrices. If after time T we have H(T) =
H(0), then after evolving |+;) according to Eq. (1.60) it would be natural to
expect that it will return to its original value. That is,

?
[+1) = |+0)- (1.74)

Berry’s remarkable discovery was that this does not happen. Rather,
[+1) = &% 1), (1.75)

where the phase 0[] that now bears his name is a functional of the path 7.

To get a better grip on this slippery concept, recall that the Hamiltonian of
our two state system (Eq. (1.43)) is parametrized in terms of the field H(t).
Suppose we fix the states |H, &) for each value of the field at the outset. That
is, there is no ambiguity in the phase as in Eq. (1.75). We can then use these
states to write the state of the system in the instantaneous eigenbasis (c.f.
Eq. (1.58))

[¥(8)) = e (1) [H(E), +) + e () [H(1), —). (1.76)

If [H, +) changes smoothly as H changes, we will see that Eq. (1.60) cannot
be obeyed: there is always some contribution in the direction of |H, +) corre-
sponding to a change of phase. This defines a vector field in the space of H
by

A+(H) = —i(H,+[(Vu [H +)), (1.77)

and likewise for |[H, —).

Problem 1.10

Show that using normalized states guarantees that A (H) is real.

Things become a lot clearer with a concrete example. Let’s write H =
Hoyn, with n a unit vector. Introducing spherical polar coordinates in the
usual way

sin 6 cos ¢
n= | sinfsing |, (1.78)
cos 6

The Hamiltonian H = H - S takes the form

Hy [ cos® sinfe ¢
H=— ) .
2 (sin fe? —cosé. ) (1:79)

You can then easily check that the eigenstate |H, +) is

cos (6/2) e~ ¢/2
H +) = . . . 1.80
| ) ( sin (6/2) /2 (1.80)
The gradient operator in spherical Computing A (H) defined by Eq. (1.77) gives
polarsis V = 9, + 939 + &a(p.
We'll often use the notation 9, = %, A (H) — _ 4 cotf (1 81)
* 2r ’

2 .
92 = ;7, etc. in these notes.



Problem 1.11

By finding |H, —), convince yourself that

A_(H) = —Hf)%. (1.82)

We now use Eq. (1.76) in the derivation of the adiabatic theorem as before.
Instead of Eq. (1.60) we get

(H, —|sH[H, +)

5[H,+) = ST R ) LA (H) S ), (183)
0
where we have used E; — E_ = Hy. After making the adiabatic assumption
we get
lhi c+\ E+ (t) +hA+ (H) -H 0 Ct (i’)
dt \c_ ) 0 E_(t)+hA_(H)-H) \c_(t))’

(1.84)
and the solution is now

ci(t) =exp (—;l /Ot [E+ (') +hAL(H)-H| dt’> c+(0). (1.85)

Moving around a closed loop, we see that the states acquires an additional
phase

Op,[7] = — 747 A (H) - dH, (1.86)

which depends only on the path, and not on the way it is traversed (i.e. the
parametrization H(t)).

CLEARLY, A} depends on how we chose our states |H, &) in the first place.
So you could be forgiven for thinking that 0 + does too. However, any other
choice can be obtained by multiplying |H, £) by some H dependent phase
factor. Then

|H,+) — exp (iA+(H)) |H, £)

(1.87)
A (H) — Ay + VAL (H),

and the line integral in Eq. (1.86) is unchanged. Thus 63, is a property of the
path v in the H space, not of how the phases of the eigenstates are chosen.
You should recognize Eq. (1.87) as a gauge transformation, with A+ (H)
playing the role of the vector potential (sometimes called the Berry poten-
tial). We have just shown that 6p . is a gauge invariant quantity.
To get to the geometric meaning of 6 1., we compute the ‘magnetic field’
associated with A4

PN

r

Bi(H) = VH X Ai(H) = iﬁ'

(1.88)
which corresponds to a magnetic monopole of charge £4 at the origin. This
field is a gauge invariant quantity, which provides another way of seeing the
gauge invariance of 0p +. Using Stokes’ theorem to convert the loop integral
in Eq. (1.86) into a surface integral over a surface £ bounded by 7 gives

Q
O+ (7] = —/}:Bi dS = F -, (1.89)
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Figure 1.5: Sir Michael Berry may be
best known to the general public as
the winner of the 2000 IgNobel prize
for physics, for his work on levitating
frogs. He shared the prize with Andre
Geim, who went on to be the first
person to win both the IgNobel and
Nobel prizes (the latter in 20010 for the
discovery of Graphene). Many predict
that Berry will be the next.

While there is an ambiguity of Q) <
47 — Q) in the solid angle enclosed

by a curve, this is harmless because
(accounting for the change in the sense
of the curve) it amounts to a change of
the phase by 27.
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Other discussions of this effect can
be found in (Montgomery, 1991) and
(Levi, 1994).

where () is the solid angle enclosed by 2.

Note that the singularities appearing the gauge field in Eq. (1.81) at the
north and south poles have no physical meaning. It is better to focus on the
field B+ which is well behaved there.

TANGENT A beautiful classical analogue of Berry’s phase can be demonstrated
using a gyroscope. Imagine holding one end of its axle, and moving it around so
that a unit vector parallel to the axle traces out a closed curve on the unit sphere.
When you return the axle to its original orientation, you will find — provided the
bearings are nice and smooth — that the wheel has rotated! Remarkably, the angle
of rotation turns out to be the solid angle enclosed within the curve traced out on
the unit sphere.

It sounds like this must be connected to Berry’s phase, and indeed it is. Though
the physics of this situation is very different, the mathematics is almost identical.
To deal with the physics first: the key point is that, by holding the gyroscope by
the axle, we never apply any torque parallel to the axle. Thus the angular momen-
tum in this direction is fixed (to zero, say). However, this direction is changing in
time.

Let’s denote by 60 the angular orientation of the wheel on the axle. Imagine mark-
ing out the angle in degree increments on the axle, and measuring 6 using some
mark on the wheel. It’s natural to write the condition of vanishing angular mo-
mentum as )

Loge =16 =0. (1.90)
Actually, this won’t quite do, because the whole point is that the axle itself is going
to move. Imagine twisting the axle back and forth, keeping it pointing in the same
direction. The wheel will not move, though the angle 6 will be going up and down
because the axle is moving.

To include this effect, imagine defining an orthonormal triad of vectors (a, b, n),
where n is parallel to the axle, and a X b = n. The motion we just described
corresponds to a rotation in the a — b plane. Rotating the axle by ¢ corresponds to

a — cos ¢a + sin ¢pb

1.91
b — cos¢b —sin pa. (1.91)
Now notice that
dp=—a-db=>b-da (1.92)
Thus Eq. (1.90) should really be
. . R 1 R
9+4>:9+§[b-a—a-b}=0. (1.93)
To make the connection to Berry’s phase, we introduce the complex vector ¢p =
(a+ib) /+/2. Then Eq. (1.93) can be written
)
0+ zz[;+d—lf =0. (1.94)

Now for each direction n, fix a and b. We have some freedom here, as we can al-
ways choose them differently by rotating in the plane normal to n as in Eq. (1.91).
This is entirely analogous to the freedom to choose a gauge that we had in the
quantum problem. Once we have done this, we can find the angle of rotation by

= /édt _ /—izp*‘%’ dt — /An-dn, (1.95)
where we defined A, = fil/ﬁvnlp. Just as with Berry’s phase, this angle is
independent of the arbitrary choice we just made.

Now we just have to compute it. We first fix an explicit form for the triad
a = (cos 6 cos ¢, cos O sin ¢, —sin )
b = (—sin¢,cos¢,0) (1.96)

n = (sin 6 cos ¢, sin O sin ¢, cos b),



and then compute
An = —cosOVno. (1.97)

We get . A
A@:}{An-dn:/(vnxAn)-ds:/sineded¢:Q, (1.98)

which is the result stated above.

Va X Aj can be found in a slicker way without introducing an explicit
parametrization of the triad. To evaluate the antisymmetric tensor

dia-djb—dja-db, (1.99)

we first notice that d;a must lie in the b — n plane (to preserve normalization) and
likewise d;b must lie in the a — n plane. Thus Eq. (1.99) can be written

dja-djb —9d;ja-0;b = (n-0;a) <n . ajb) — (n - aja) (n-9;b). (1.100)

Now using the property n - d;a = —a - d;n, which follows from preserving the
orthogonality of the triad under differentiation, we have

(n-0;a) (n . ij) - (n : aja> (n-0;b) = (a-9;n) <b . a]-n> — (a . a]-n> (b-0;n)
=(axb)- (ain X a]-n>
=n- <8in X ajn) .

(1.101)

In polar coordinates
n- (Bin X a]-n> =sin00;00;¢, (1.102)

which is just what we found before.
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2
Introduction to path integrals

My machines came from too far away.
Richard Feynman

2.1 The languages of quantum theory

From the outset, quantum mechanics was written in two apparently different
languages. Schrodinger’s equation, published in 1926, describes the time
evolution of the wave function ¥(r,t) of the system

272
it — [h Vv

5 7 Y (r,t). (2.1)

It is historically the second formulation of modern quantum theory, the first
having been given a year earlier by Heisenberg. In Heisenberg’s version it
is the matrix elements of observables that evolve in time: hence this way of
doing things is sometimes known as matrix mechanics. Schrodinger quickly
proved the equivalence of the two approaches, and in Dirac’s formulation of
operators acting in Hilbert space, this equivalence is rather evident. The evo-
lution of a state can be written using the unitary operator of time evolution
U(t) = e ™t/ where H is the Hamiltonian, as

(¥ () = U(t) [¥(0)) . (2:2)
For any operator O and pair of states |®), |¥), we then have
(F(1)[0O]@(t)) = (¥(0)|O(1)[®(0)) (23)

where O(t) = €/Ht/" e~/ Jefines the time evolution of O. To put it
another way, O(t) obeys the Heisenberg equation of motion

= slHol. o
In contrast to the Schrodinger equation, which allowed physicists trained to
solve the partial differential equations of classical physics to go to work on
the problems of the atom, Heisenberg’s formulation is practically useless. It
took the genius of Wolfgang Pauli to solve the Hydrogen atom using matrix
mechanics, a calculation we will discuss in Chapter 6

Eq. (2.1) and Eq. (2.4) embody a radical departure from classical ideas. In
particular, the notion of a trajectory r(t) of a particle in time is nowhere to be
seen. It is surprising, then, that there is a way to describe quantum mechan-
ics in terms of trajectories, and more surprising still that it did not emerge
until more than 20 years after the above formulations. This is Feynman’s
path integral.

Dirac’s book The Pinciples of Quantum
Mechanics (Dirac, 1982), published in
1930, is worth opening to marvel at
how little the formalism has changed
from that day to this. To get some idea
of the speed with which these rather
abstract notions had entered physics,
bear in mind that Heisenberg’s mentor
Max Born had to point out to him that
the novel rule Heisenberg had found
for composing matrix elements was
nothing but matrix multiplication, little
used by physicists of the day!

The original reference is (Feynman,
1948). Coincidentally, around the same
time a fourth formulation of quantum
theory was given by Groenewold and
Moyal. This phase space formulation
makes contact with classical mechanics
through the Hamiltonian, rather than
Lagrangian, viewpoint. We'll meet it
briefly in Chapter 4.
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The weird notation K(r, t|¥/, t) is to
emphasize that r’ and ¢’ are to be
treated as parameters. In particular,
when we apply the Hamiltonian, it
will operate on the r variable only.

2.2 The propagator

The path integral is a tool for calculating the propagator. Since this is an
idea of wider utility, we’ll take a moment to get acquainted. In fact, we al-
ready have, for the propagator is just a representation of the time evolution
operator

K(r tl!, )y =0t —) (r|U(t —t)|Y), (2.5)

where |r) denotes a position eigenstate. 0(t) is the step function

1 t>0
0(t) = - (2.6)
0 t<0

As the name implies, K(r, t|[t', ') is used to propagate the state of a system
forward in time. Thus Eq. (2.2) may be written, for t > #/

F(rt) = (¥ () = (Ut =) [¥(H))
= [t - ) () 27)
- / dr' K(x, |, £ )E (¢, 1),
where in the second line we inserted a complete set of states. Equivalently,

K(x, t|t',t') is the fundamental solution of the time dependent Schrodinger
equation, which means that it satisfies

{iha - H} K(x, t|t, ') = ihd(x — ¢)(t — ') and

ot (2.8)

K(r,tlY,#)=0fort <t

Problem 2.1

Explain why these two definitions are equivalent. Hint: integrate
Eq. (2.8) through a small interval /¥ — ¢ < t < t + etofind
K(r,t' +e€lr,t).

The idea of representing the solution of a partial differential equation (PDE)
should be familiar to you from your study of Green’s functions. Indeed,
‘Green’s function’” and ‘propagator’ are often used interchangeably.

The fact that the wavefunction at later times can be expressed in terms of
¥ (r,0) is a consequence of the Schrodinger equation being first order in time
(and linearity naturally implies the relationship is a linear one). To see the
generality of the idea, let us first discuss how it works for the heat equation,
another PDE first order in time. The fundamental solution satisfies

[;’ - Dv’f} Kieat (1, Y, ') = 6(x — ¥)3(t — ')
t (2.9)

Kheat(rr tlr/; t/) =0fort <t



Problem 2.2

Show (i.e. verify — if you have the answer already that’s perfectly ac-
ceptable!) that the fundamental solution of the heat equation is

o(t —t') (r—r)? }

AT AN - 7
Kpeat (1 £, ') = (@rD(t— ) eXp{ aD(t— 1)

(2.10)

Thus if ©(r,0) describes the initial temperature distribution within a uni-
form medium with thermal diffusivity D, then at some later time we have

O(rt) = / At Kpear (1, £, 0)O(r, 0). (2.11)

Eq. (2.10) and Eq. (2.11) have the following meaning. We can represent the
initial continuous temperature distribution as an array of hot spots of vary-
ing temperatures. The evolution of a hot spot is found by solving Eq. (2.10),
with the right hand side representing a unit amount of heat injected into
the system at point ' and time #'. As time progresses, each hot spot diffuses
outwards with a Gaussian profile of width /D(t — t'), independently of the
others by virtue of the linearity of the equation.

Problem 2.3

What can be accomplished in one time step can equally well be done in
two. The propagator must have the property

K(r tlt',t') = /dr”K(r,t|r”, YK Y. (2.12)

Verify that this holds for Kpeq(r, t|t/, ).

With this in hand, it’s a small leap to find the propagator for the free
particle Schrodinger equation. The Hamiltonian is H = 7%, so by taking
D — %andt—m’t,weget

3/2 N2
Keree (1 t|r', ') = 6(t — t) (Wnﬁ) exp [—%} (2.13)

The propagator in momentum space

We originally defined the propagator in Eq. (2.5) as a real space repre-

sentation of the time evolution operator. We could just as well choose to

take matrix elements in another basis. Since the free particle Hamiltonian
v2

2 .1 . .
H=— hzT is diagonal in momentum space, it makes sense to look at

Kiree(p, tlp’, t)) = 0(t — ') (p|U(t — ') ')

=0(t—t)exp (—i;:it;lt/> s(p—p) G
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T
Figure 2.1: Spreading of a hot spot.

In d dimensions the 3/2 power in the
prefactor becomes d4/2.

Don't forget that with the normal-
ization used here, |r) has units of
[Length]_d/ 2, while |p) has units
[Momentum] 4’2 A §-function §(x) in

d-dimensions has units of [x]_d.
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In terms of the Hamiltonian H (),
U(t,t') has the deceptively simple
form

i t
U(t,t') = Texp {—% /t dtiH(ti)} ,

where 7 denotes the time ordering

operator. The time ordering is essential
because the commutator of the Hamil-
tonian evaluated at two different times

is in general nonzero.
r

¢

T

t t¢
Figure 2.2: Slicing the propagation
time into many small intervals.

* These three words are terribly glib.
Spare a thought for the mathemati-
cians who had to try and make some-
thing respectable out of this!

> The particular choice is unimportant
here, but the midpoint prescription
turns out to be vital when a vector
potential is included. See (Schulman,
2005), Chapter 4.

Problem 2.4

Confirm that Eq. (2.13) and Eq. (2.14) are related by a change of basis
(Fourier transform) using

clo) — exp(ip - r/h)
< |P> - (27’[?1)3/2 .

Notice that the reproducing property (Problem 2.3) is trivial in this
basis.

THIs IDEA generalises to any time independent Hamiltonian with a com-
plete set of energy eigenfunctions { ¢, (r)} and eigenvalues {E, }

K(x 1) = 0t — 1) T g ()3 (¢ ) E1=00/1, (2.15)

For a time dependent Hamiltonian, we have the complication that the time
evolution operator must be thought of as a function of two variables — the
initial and final times, say — rather than just the duration of evolution.

[¥(t) =U(tt) [¥(t)). (2.16)

Nevertheless, the propagator K(r, t|t/,t') = 6(t — t') (r|U(t, t')|r) obeys the
same basic equation Eq. (2.8).

2.3 The path integral

By using the reproducing property of the kernel (Problem 2.3) we can sub-
divide the evolution from time t; to t¢ into N smaller intervals of length
At = (tf — ;) /N, each characterized by its own propagator

K(rg, telr, t;) = /drl oedry_q K(rg, telen—1,tn—1) - - - K(ry, |13, £). (2.17)

This is not totally perverse: as we will see shortly the apparent increase in
complexity is countered by the simplification of the propagator for small
propagation intervals. The idea is that in the limit* the integration over the
variables {r;} becomes an integral over paths r(t), with a continuous index —
time — rather than a discrete one. This is the path integral.

So what is the integrand? A clue is provided by the observation that in
the presence of a constant potential V(r) = V), the propagator is a simple
modification of Eq. (2.13)

3/2 /\2 /

PN gy m om(r—r)* Vp(t—t)
Kiree (1, 1, 1) = 0(t = 1)) <2i7‘ch(t—t’)) eXp[ 2ih(t—t') |
(2.18)
as may be verified by direct substitution into the Schrodinger equation. Now

as the propagation time t — t' goes to zero, we know that the propagator is
going to approach a J-function. Therefore, Eq. (2.18) should still hold if we
take Vp to be the value of the potential at the midpoint rz—r/ (say)>.

Putting this into Eq. (2.17), for N — oo, (r;41 —17)2/ (ti11 — ;) — 24t

i [t
K<rf/ tf|ri/ tl) = /r(tf):rf Dr(t> eXp (E/t

r(t)=r; !

[mi‘2

S V(r(t))] dt> . (219



The symbol Dr(t), which corresponds to a ‘volume element’ in the space
of paths, is presumed to contain the appropriate normalization, including a
21,7;%&)3]\]/2. The subscript on the [ Dr(t) integral
indicates that all paths must begin at r; and end at r;.

horribly divergent factor (

One may wonder how Eq. (2.19), beset by such mathematical vagaries, can
be of any use at all. One thing we have going for us is that all of these diffi-
culties have nothing to do with V(r), and are therefore unchanged in going
from the free particle case to something more interesting. We can therefore
use the free particle result to provide the normalization, and calculate the
effect of introducing V(r) relative to this.

Enter the Lagrangian

It’s a historical oddity that the Hamiltonian is one of the last things you meet
in classical mechanics and one of the first in quantum mechanics. Eq. (2.19)
represents the first appearance in quantum mechanics of the Lagrangian

2
L(r i) = mTr —V(1), (2.20)
and its time integral, the action
t
S[r(t)] = / "L(e(E), £(1)) dt (2.21)
£

As you know very well, variations of the path r(¢) with fixed endpoints (i.e
r(t)) = 1j, r(tf) = rg) leave the action unchanged to first order if (and only if)
the Euler—Lagrange equations are satisfied

oL d (JL
a — E (ar> =0. (2.22)

As we'll see shortly, the path integral provides a natural explanation of how
these equations and the action principle arise in the classical limit.

2.4 DPath integral for the harmonic oscillator

To show that this all works we at least have to be able to solve the harmonic
oscillator. Confining ourselves to one dimension, the Lagrangian is

1 1
Lspo(x, %) = mez - Emexz. (2.23)

The propagator is therefore expressed as the path integral

D e
L P ew (g |

SsHo[x(#)]
2.2

[mzxz — mwz i } dt). (2.24)

This form is reminiscent of a Gaussian integral. Before we can use this in-
sight, we first have to deal with the feature that the paths x(t) satisfy the
boundary conditions x(#;) = xj, x(t;) = x;. We can make things simpler

Ksno (xg, te|xi, ti) = /x<

X

te)
t 1

by substituting x(t) = xo(t) + 7(t), where x((t) is some function satisfy-
ing these same conditions. Then #(t), the new integration variable, satisfies
n(t) = 1n(t) =0.

THEORETICAL PHYSICS II

The square brackets are used to
indicate that S is a functional of the
path. A functional is a machine that
takes a function and produces a
number.

27
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Choosing x(t) to be the classical
trajectory eliminates the linear term in
7 in general. This is after all exactly
what the action principle tells us

that classical trajectories do (note the
condition of fixed endpoints, vital in
the derivation of the Euler-Lagrange
equations, arises naturally here). The
action for 7(t) will not be independent
of xo(t) for more complicated - i.e.
non-quadratic — Lagrangians, however.

What should we take for xo(t)? Making the substitution in the action

gives A linear shift
not effect the

Dx(t) = Dn(t

Ssmolxo(t) +7(8)] = Ssrolxo(t)] + Ssroly ()] K=o

+ /:f [mxo(t);y(t)—mwzxo(t)q(t)} dt. (2.25)

Integrating the last term by parts, and bearing in mind that #(f) vanishes at
the endpoints, puts it in the form

tg
—/ [mjc'o(t) + mwzxo(t)] n(t)dt. (2.26)
ti

We recognize the quantity in square brackets as the equation of motion

of the simple harmonic oscillator. Thus if we choose x((t) to satisfy this
equation, the cross term in Eq. (2.25) vanishes and the propagator takes the
form

i

Kspo (x¢, te|xi, t;) = exp (hSSHO[xO(t)]) X

i [t
Dn(t) ex (/
/;7(tf>:n<ti>:o 10 e (7 ),

1

) 2.2
mi©  mwn
{2 5 }dt). (2.27)

Problem 2.5

Show that the classical action is

mw

Ssho[xo(t)] = 2sin[w (b —h)]

[(xf + x%) cos [w (tr — 1)) — ZXin:|
(2.28)

Now WE turn our attention to the # path integral in Eq. (2.27). Because the
action for 7(t) is independent of time, and 7 () vanishes at the endpoints, it
cries out to be expanded in a Fourier series

§(t) = Y fusin [””tf(t_t”] | (2.20)
n=1 1

In terms of the Fourier coefficients {7, } the action takes the form

m _ 1) @ 2,2
SSHO[TI(t)] = (tf4 tl) 2 |:(tf7-[_ ti)2 _w2:| 17% (2-30)

n=1

The % integral now begins to look like a product of Gaussian integrals, pro-
vided that we are free to interpret Dy (t) = [;° dyyn (we are).
The Gaussian integral we can do

/7 dxe t¥/2 = \/ 2—7( (2.31)

So we take a wild guess and write

2 i = [4mih te — t
Ksro(xp, te|xi, 1) = exp (hSSHO[xO(t)]> x T \/ (t —t)

a1 \omo mPn? — w?(t — )%
(232)
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vith imag-
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t the (tf - ti)
2.29) becomes
nitesimal €.
ee conver-
out changing

Does it work? No. But then we didn’t expect it to, because of the difficulties
in defining the path integral in the first place. However, as we noted in the
previous section, the fudge factor required is independent of the potential,
so the overall normalization can be deduced from the free particle result that
must apply when w = 0. Adapting the result Eq. (2.13) to one dimension, we
find

Kspo (xg, te|xi ti) = (,71))1/2 exp (;SSHO[xO(t)])

Ziﬂh(tf — 4
°° W2t — )2\
X 1_[1 (1 — (7rznzl)> . (2.33)
n=

The infinite product was found by Leonhard Euler (1707-1783)

[e9) 2 _1)\2 : _f.
11 (1 Wit — ) ) _ sinw(t tl). (234)

il 2n2 w(ty— 1)

We arrive at the final result

mw e 1
Kspo (x4, X, t) = (Zinh - fi)) exp (ESSHO[XO(t)]) :

(2.35)

Problem 2.6

Show that this is correct. Hint: You only need to show that this solves
the appropriate Schrodinger equation, as the short time behaviour
(when w(t; — tj) < 1) is the same as for the free particle.

What can you actually do with a path integral?

¢ Gaussian integrals (like the simple harmonic oscillator).
e Err..

e That's it.

Bear in mind, however, that the number of problems that can be solved
exactly by the other formulations of quantum mechanics is also rather lim-
ited. Apart from the harmonic oscillator, the other Hamiltonian you all know
how to solve exactly is the Hydrogen atom. Can it be done with a path inte-
gral? The answer is yes3. Furthermore, the special features of the Hydrogen
atom that make it amenable to exact solution — we’ll discuss them in Chap-
ter 6 — are precisely the same features that make it possible to calculate the
path integral.

The value of the path integral is firstly to provide a new language for
quantum theory, one that has given rise to many new insights. New effects
can arise when the topology of paths is important, e.g. the Aharonov-Bohm
effect.

A new formulation can also suggest new approximate methods to solve
problems that have no exact solution. The most obvious approach is to ex-
pand the integrand in the path integral in powers of the potential V(r). This
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31L.H. Duru and H. Kleinert. Physics
Letters B, 84(2):185-188, 1979

This illustrates the principle of conser-
vation of troubles, according to which

a problem is no easier or harder in a
different language; the difficulties are
just moved around (and sometimes out
of sight!).
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You may need to look back at AQP
to refresh your memories here. The
idea is that the WKB form of the
wavefunction breaks down near the
turning points of the classical motion,
so one instead approximates the
potential by a straight line, and uses
the exact solution of the Schrodinger
equation in a linear potential in this
region.

Using the convention f(x) =
I, e* f(k) 4k Overall numerical
factors aren’t important here: it’s a

linear equation.

turns out to be equivalent to time-dependent perturbation theory, as you can
easily check.

A more useful line of attack is to try to evaluate the path integral numer-
ically, using the same discretization of time that we used to derive it. For
Eq. (2.19) this is in fact a terrible idea, as the integrand is complex, and os-
cillates wildly, leading to very poor convergence. However, as we’ll see in
Chapter 4, it is possible to formulate the partition function of quantum sta-
tistical mechanics as a path integral in imaginary time. We’ve already seen
the form of the propagator in imaginary time, when we discussed the heat
equation (Eq. (2.10)). Notice that it is real and positive, so we can think of it
as a probability distribution. Evaluating the partition function by sampling
the probability distribution of paths is the basis of the path integral Monte
Carlo method.

2.5 The method of stationary phase

The other great insight provided by the path integral concerns the emer-
gence of classical mechanics from quantum mechanics. The appearance of
the Lagrangian and action in the integrand should already have us asking
what role the condition of stationary action plays in quantum theory. A clue
is provided by a method of approximating ordinary integrals that goes by
the names steepest descent, stationary phase, saddle point, or occasionally
Laplace’s method.

As a concrete example, recall that in developing the (J)JWKB method, we
need to understand the solutions of Airy’s equation

f'(x) = xf(x) =0, (2:36)

The solution of this equation is a non-elementary function called the Airy
function (in fact, there are two linearly independent solutions, as this is a
second order equation), and we are particularly interested in its behaviour
at large |x|. As is often the case with special functions, there is an integral
representation of the Airy function, and we can use this to find the large |x|
behaviour in a controlled way.

The first thing to note is that the Fourier transform of the equation

if (k) +Kf (k) = 0 (237)
is first order, and may be solved easily
f(k) = Aexp (ik3/3) , (2-38)

with A some constant. Thus all we have to do to find the solution f(x) is
compute the Fourier integral

Fx) = [ ™ fk)dk = A / exp (il /3 + ikx ) dk. (2.39)

But wait! A linear second order equation has two independent solutions,
and it looks like we have only found one. However, we didn’t yet specify the
contour of integration in Eq. (2.39), and our freedom to choose this allows us
to generate more than one solution.



Problem 2.7

Show that f(x) defined by Eq. (2.39) satisfies Airy’s equation as long as
the integrand vanishes at the endpoints. Hint: integrate by parts.

Where does the integrand vanish? We have to go to large |k| in such a
way that the dominant term ik®/3 term in the exponent has a negative real
part. Writing k = |k|e®, we can see that this happens as |k| — oo in the three
wedges

I: 0<0<m/3
1I: 2t/3 <0< (2.40)
I 4m/3 <0 <57/3
Different choices for the starting and ending wedge give different solutions.
Now comes the key idea. Because the integrand is an exponential, it
quickly becomes negligible as we move off into a wedge. The largest con-

tribution should come from the largest value of the real part of the exponent.
The stationary points satisfy k* + x = 0 and lie at

+iy/x forx>0
ksp = (2.41)

+/x] forx<0’

with the integrand taking the values

exp <$%x3/2)

exp ($i%\x\3/2) for x < 0.

forx >0
(2.42)

exp (ikgp/S + ikspx) =
As we go to large | x|, the decay of the integrand as we move away from
these stationary points becomes more rapid. Fixing x > 0 and expanding the
exponent around the saddle point value gives

exp (ik3/3 + ikx) ~ exp <:F§x3/2) exp (:Fﬁ (k— ksp)z) (2.43)

where the + signs correspond to the stationary points at +iy/x. For i\/x,
moving parallel to the real axis therefore corresponds to the direction of
steepest descent, in which the integrand decays fastest. For —i+/x, the steepest
descent direction is parallel to the imaginary axis.

Eq. (2.43) replaces the integrand by a Gaussian of width ~ x~1/4, an
approximation that obviously improves very quickly as x becomes large. For
the contour in Fig. 2.3 which passes through i\/x, the integral in Eq. (2.39) is
then approximately

1/2
fx) ~ Al exp (—2x3/2) as x — o (2.44)
7 3 , . .

The Airy function Ai(x) is defined by this contour, with the (arbitrary)
choice A =1/ (2m). Thus we have

. 1 2
Ai(x) ~ > 172174 &P <—3x3/2) , s X — o0 (2.45)

The case of x < 0 is slightly trickier, as the two stationary points lie on
the real axis. In this case we pass through both stationary points, and in the
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Figure 2.3: A possible contour in the
plane of complex k, passing through
one of the stationary points of the
integrand.

Use Cauchy’s theorem to convince
yourself that only two are indepen-
dent.

Why do we look at a stationary point
if we only want to maximize the real
part of the exponent? Think about the
Cauchy-Riemann equations.

For an analytic function, all stationary
points are saddle points, which is why
we use the terms interchangeably here.

The second solution that grows ex-
ponentially for x — oo is denoted by
Bi(x) and sometimes hilariously called
the Bairy function.
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Figure 2.4: For x < 0 we pass through

both stationary points of the integrand.

Gaussian approximation we can just sum the contribution from each. Near
these points the integrand takes the form (c.f. Eq. (2.43))

exp (iK3/3+ikx) ~ exp (Fi2 |22 ) exp [ 2iy/[x| (k— k)2 ). (2.46)
p p(Fi3 p p 4

We see that the steepest descent directions are now at angle +7/4 to the
real axis for the saddle point at £4/|x|. Accounting for this rotation of the
contour when we do the Gaussian integral gives

2
Ai(x) ~ sin <3|x|3/2 + 7'[) , as x — —oo. (2.47)

7r1/2|x|1/4 4

The 77/4 phase shift is the ultimate origin of the ‘extra’ 1/2 in the Bohr—
Sommerfeld quantization condition

}{p(x)dx =h (n + ;) , n integer, (2.48)

where p(x) = /2m (E — V(x)) is the classical momentum at position x of a
particle with energy E moving in a potential V (x).

Problem 2.8

You are familiar with Stirling’s approximation in the form
InN! ~ NInN — N. (2.49)

Sometimes, however, this approximation doesn’t cut it. Think of the
number of ways of getting 50 heads with 100 coin tosses

100\ (1)'* _ 100t [1\'® (2.50)

50)\2) T soZE\2) 2
Eq. (2.49) would tell you that the answer is approximately one. To get
something better, we write

N!:/ xNe ¥ dx (2.51)
0

(proof by integration by parts) and use the saddle point method, valid
at large N. Show that this yields

N! ~ NNe=Ny/27N. (2.52)

A better estimate for the above probability is then T 0.080.

2.6 The classical limit

Now we understand the method of stationary phase, we proceed to discuss
the path integral by analogy. The integrand in Eq. (2.19) is

exp (;Sh(t)]) , (2.53)

where S[r(t)] is the action. Planck’s constant immediately presents itself as a
small parameter on which to base the stationary phase approximation. More



precisely, if the ratio of typical variations of the action to Planck’s constant is
large, we are justified in approximating the path integral as Gaussian in the
vicinity of the extremum of the action. But we know that the extremum cor-
responds to the classical trajectory r.(f). This suggests that, schematically,
the propagator can be written approximately as

K(r,t;¥,t') ~ (Gaussian integral) x exp (;S[rd(t)o ) (2.54)

The classical trajectory is the one satisfying rq(t) = r, rq(t') = r’. That is, the
endpoints fix the solution, rather than the initial position and velocity.

The result is a beautiful connection between the classical and quantum
formalisms. The path integral tells us that the amplitude of a process is the
sum of amplitudes for all possible trajectories between two points. But in
the classical limit — which corresponds to systems sufficiently large that the
variations of the action are much larger that Planck’s constant — almost all of
these trajectories cancel out because of the wild fluctuations of the phase of
the integrand. The dominant contributions are those close to the extremum
of the integrand i.e. the classical trajectory.

TANGENT Unfortunately we don’t have time to make Eq. (2.54) precise. The result
of evaluating the Gaussian path integral is the van Vleck propagator4. In three
dimensions, this is

Kyv(r, Y, 1) = ) ! 3/2det _ s _1/2ex iS[r ()]
WA B 27k oror’ P{ 7ot ‘

classical paths
(255)

The classical action is a function (not a functional) of r, t’ because ry(t) depends
on the endpoints (c.f. Eq. (2.28)). In general there may be more than one classical
trajectory connecting two points (if there is periodic motion, say), so we have to
sum over all of them, just as when we evaluated the Airy function for x < 0.
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Such approximations are usually called
semiclassical. The WKB method is
another example.

4See (Van Vleck, 1928). As the date
indicates, you don’t need the path
integral to derive this result!

This doesn’t happen for the harmonic
oscillator because the period is con-
stant.






3
Scattering theory

Scattering experiments play a vital role in modern physics. In a typical scat-
tering experiment, particles approach each other ‘“from infinity” — which is to
say from far outside the range of their interaction with each other — spend
a short time in close proximity, and then go their separate ways. As they
propagate outwards from the collision region, their interaction ceases but its
imprint is left on the scattered waves, ready to be picked up by a detector.
This basic picture encompasses a wide variety of different situations. We
list just a few examples

® The scattering of neutrons from a crystal lattice to determine magnetic
structure.

¢ The scattering of a-particles from the nuclei in a layer of gold leaf
(Rutherford scattering”).

* The collision of protons in the LHC.

The usefulness of scattering as an experimental technique therefore hinges
on solving the ‘inverse problem’ of inferring the interactions (i.e. the Hamil-
tonian) from the scattered waves. Our purpose in this chapter, on the other
hand, is to describe the general mathematical structure of scattering.

3.1 Scattering in one dimension

A great many of the concepts of scattering theory can be introduced in one
dimension, where certain complexities of our three dimensional world are
absent. As an additional simplification, we'll study the scattering of particles
from a static potential: the ‘target’. The generalization to the scattering of
pairs of particles is not difficult — it involves viewing the collision in the
centre of mass frame, which as usual reduces to a single particle problem.

The situation we aim to describe is illustrated in Fig. 3.1. A wavepacket
approaches the origin from —oo. Near the origin it interacts with a potential
V(x). As a result of this interaction, a modified wavepacket is transmitted
and another is reflected, and these move to +co.

Let’s suppose that V(x) either vanishes outside some finite region that
includes the origin, or is otherwise negligible (exponentially decaying, say).
We’ll sometimes refer to this region as the interaction region. Long range po-
tentials bring certain complications that need not concern us at the moment.
As well as being relevant to a great many scattering experiments, interaction
with a localized potential brings the wonderful simplification that outside of

‘It was quite the most in-
credible event that has ever
happened to me in my life.
It was almost as incredible
as if you fired a 15-inch shell
at a piece of tissue paper
and it came back and hit
you.”

Figure 3.1: Schematic view of scatter-
ing in one dimension.
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the range of the potential, the energy eigenstates of the system take the form
of plane waves. This allows us to construct the incoming wavepacket from
the eigenstates, just as we would construct one from plane waves. If we now
imagine the wavepacket becoming more extended in real space, then eventu-
ally it becomes indistinguishable from an eigenstate. In a little while, a ‘relic’
of the wavepacket picture will be required to make sense of some of our ex-
pressions, but for the moment let us continue to discuss the eigenstates of
the problem.

As we have already mentioned, outside of the interaction region an en-
ergy eigenstate must have the form

ay exp (ikx) +a_exp (—ikx) x <0

Yi(x) =
(x) by exp (ikx) + b_exp (—ikx) x>0,

(3-1)
where the wavevector k is related to the energy of the state by E, = ?‘22—512
Now, the four complex coefficients in Eq. (3.1) are not independent of each
other. Rather, they are related by finding the form of the wavefunction
within the interaction region, as the following example shows.

Problem 3.1

For a d-function potential V(x) =  gd(x), show that the relationship
between the coefficients in Eq. (3.1) may be written in terms of the
scattering matrix S(k)

S(k)

—~
a-\ _(ryp tre)\ [a+
()= ) ()

where the reflection and transmission coefficients have the form

ih’k/m

“atkm—g Y

TLL = 'RR = fRL = HR

&
in’k/m—g’
Hint: think about the boundary conditions obeyed by the wavefunction
at the origin.

What property of this problem is responsible for 11}, = rgr, frR. =

HR?

The scattering matrix expresses the outgoing waves (i.e. the wave at x < 0
moving to the left and the wave at x > 0 moving to the right) in terms of the
incoming waves. Probably you are familiar with the form

exp (ikx) +rrpexp (—ikx) x <0

Yie(x) = ,
tLr exp (ikx) x>0

(3-4)
which describes a wave coming in from —co only, and corresponds to taking
ar=1,b_=0.

Another way to encode the same information is in terms of the transfer
matrix T(k), which expresses the amplitudes on one side of the scatterer in
terms of those on the other

by ay tLR — "RR7LL/tRL  TRR/IRL )\ (a4
:Tk = .
o) o (o) = (o ) () oo



The transfer matrix has the nice feature that it can be found for a number of
scatterers in series by multiplying together the transfer matrices for each.

The scattering matrix S(k) exists for any potential V(x), being defined by
the relation Eq. (3.2) between the coefficients of the plane wave components
of an eigenstate outside of the interaction region. It reduces the number of
independent components in Eq. (3.1) from four to two. The goal of scat-
tering theory is to find S(k) given V(x), or at least to deduce its general
properties. Let us discuss some of these properties now.

Flux conservation and unitarity of S(k)

The probability density P(x,t) = [¥(x,t)|*> obeys the continuity equation
0tP(x,t) 4+ 9xj(x,t) =0, (3.6)

where the probability current is

](x/ t) = “om [‘IJ 0¥ —¥o.Y ] (3-7)

When we consider an eigenstate (a.k.a. stationary state), the probability den-
sity does not change in time, and we must have

dxj(x) = 0. (3.8)

If we integrate over a region [—L, L] containing the interaction region, we get

j(=L) = j(L). (3-9)

At x = £L, we can use the form of the wavefunction from Eq. (3.1), giving

% [las2 = fa-2] = %k (16412 = 16— 2] (3.10)

(happily the cross terms vanish). Eq. (3.10) has a straightforward physical
meaning. :t% is the velocity of a particle described by a plane wave e*/**,
and the contribution of a plane wave to the probability current is the product

of the velocity and the (spatially constant) probability density.

Problem 3.2

Show that Eq. (3.10) implies that S(k) is a unitary matrix. Check that
Eq. (3.2) is unitary. What is the corresponding condition satisfied by
T(k)?

Channels and phase shifts

The scattering matrix, like any unitary matrix, can be diagonlized by a uni-
tary transformation U. The eigenvalues are complex numbers of unit magni-
tude, so we can write

v [exp(2idy) 0
Usu _< 0 exp (2i6,) | * (-11)
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When V(x) = 0 these two independent
solutions can of course be taken to be
the left and right moving waves.



38 AUSTEN LAMACRAFT

For V(x) = 0, this corresponds to
working with cos(kx) and sin(kx)
instead of e*k*.

which defines the phase shifts J; . This means that if we express the ampli-
tudes in Eq. (3.1) as

. out (3.12)
b+ o™

then the new amplitudes c" are related by

ci’,‘ét = exp (2id12) cif,‘Z. (3.13)

In this way an eigenstate is written as a linear combination of two scattering
channels, each of which has particular simple scattering properties: there is
no ‘mixing’ between channels.

In one dimension by far the most important example is provided by par-
ity symmetric potentials V(x) = V(—x). We know that the energy eigen-
states of such potentials can be chosen to have a definite parity. Referring
to the general form Eq. (3.1), this means that a; = +b_,a_ = +b,, with
a + sign for an even state and a — for an odd one. In this case we can write

Eq. (3.12) as
at+\ _ L 1 -1 ngl/en
b))  v2\1 1 g
(3.14)
a—\ _ 1 (1 -1 cut
by) v2\1 1) \cu )"
In this basis Eq. (3.1) takes the form

Yi(|x] > 0) = ceven cos (k|x| + Jeven) + sgn(x)coqq cos (k|x| + doaq) , (3.15)

where for convenience we have defined Cevenodd =
: in
exp (15even,odd) Ceven,odd/ ﬁ

Problem 3.3

Find deven and d,qq for the d-function potential of Problem 3.1, and the
form of the corresponding wavefunctions.

Integral equation for scattering amplitudes

All this formalism is well and good, but how do we find S(k), 41 2(k), and so
on in general? We are looking for solutions of the Schrodinger equation
12

_%a)%‘{f(x) + V()Y (x) = E ¥ (x), (3.16)

but we know that in general there are two independent solutions at each k,
so we need to somehow ‘force” the solution to be of the form Eq. (3.4) (say)
corresponding to a wave coming from —co. From the solution we can then
read off the scattering amplitudes.

The way to force the solution is to express the wavefunction as

¥ (x) = exp (ikx) + ¥ (). (3.17)



This defines ¥5°"(x), the scattered wave, as the part of the solution that
owes its existence to V(x), and which therefore vanishes as V(x) vanishes.
For Eq. (3.4), 5" (x) has the explicit form

roL exp (—ikx x <0
it (x) = (ke : (3-18)
(ttr — 1) exp (ikx) x>0
With the definition Eq. (3.17), we can rewrite Eq. (3.16) as
n
B+ 5-0% | ¥ (x) = V() ¥i(x). (3-19)

Now let’s introduce the inverse of the operator on the left hand side. That is,
a function satisfying

hz
Ee+ 5 0% | Gulx,x) = 8(x —x') (320)

(This is just the Green’s function of the operator of the free problem, hence
the notation). We'll write down Gi(x, x’') in a moment, but for now let’s use
it to rewrite Eq. (3.19) as

yseatt (y) — /dx’ Gr(x, XYV (" ¥(x). (3-21)

In terms of ¥;(x) this is
Yy (x) = exp (ikx) + /dx’ G (x, x" )V (x") ¥ (). (3.22)

Thus we have passed from a differential equation to an integral equation,
known as the Lippmann-Schwinger equation. What did we gain by doing
this? The point is that once Gi(x, x’) is given we have an explicit equation
with nothing further to be specified. In particular, there are no boundary
conditions that have to be imposed en route to a unique solution, as is the
case when we solve a differential equation. This is because the choice of
boundary conditions fixes the Green’s function uniquely, as we'll see in a
moment.

Indeed, the most simple-minded way to go about solving Eq. (3.22) is by
iteration

Y (x) = exp (ikx) + /dx’ Gi(x, x")V(x") exp (ikx")
+/dx’dx” G (x, XYV (x") G (', X" )V (x") exp (ikx") + -+, (3.23)

which generates the Born series.

Now let’s discuss the Green’s function. From Eq. (3.20) we can see that
this satisfies the free particle Schrodinger equation with energy E; when
x # x'. Therefore it has the form

<exp (ikx) + ¢< exp (—ikx) x < x'
Gk(x,x,>:{g+ p (ikx) + g exp (~ikx) 20

87 exp (ikx) 4+ g~ exp (—ikx) x> x'.
To fix the form uniquely we specify:

¢ Gi(x,x') is continuous at x = x
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If you are uncomfortable with the so-
lution of a time independent equation
being described as coming or going
anywhere, don’t worry. We’ll return to
the time dependent view of scattering
later.

We spoke earlier about imposing
boundary conditions on the Green’s
function, but didn’t write any explic-
itly. That’s because they look slightly
unusual:

lim [E)‘x,x/‘ — lk} G(x,x/) =0.

|x—x!| =00

However, this radiation condition has
the same content as Eq. (3.26).

(o]
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Figure 3.2: (Top) Images (left and
right) and simulation (centre) of
electron flow in a quantum point
contact, showing motion confined
to a single transverse mode. The
experimental images are made using
scanning probe microscopy of a
two dimensional electron gas in
a semiconductor heterostructure.
(Bottom) Steps in the conductance as
more conduction channels open with
changing gate voltage. Images from
(Topinka et al., 2003).

2 With the exception of the transfer
matrix.

e At x = x’ the derivative jumps

— 2m
AxGr(x, X ) {257 = R (3-25)
These two conditions follow from the defining Eq. (3.20).
* In order to generate a solution of the form Eq. (3.4), we must have
8§ =82 =0, (3.26)

which corresponds to only ‘outgoing’ waves being generated by the scat-
tering potential.

Imposing these conditions gives

G (x,x") = —i% exp (ik|x — x'|). (3.27)
We have added a + to indicate this is a particular Green’s function obeying
certain boundary conditions — the reason for this notation will become clear
later. Because it enshrines the notion of ‘cause’ (the scatterer) preceeding
‘effect’ (the outgoing wave), G, is called the retarded or causal Green’s
function.

Problem 3.4

Solve the Lippmann-Schwinger equation for the case of the J-function
potential and show that the result of Problem 3.1 is reproduced.

TANGENT One dimensional scattering theory is not just pedagogically useful:

it also forms a cornerstone of the theory of electrical conduction in nanoscale
devices. The idea is that narrow quantum wires can act as waveguides for the flow
of electrons, quantising the transverse motion and allowing a one dimensional
description of the motion along the wire. Scattering is then described by a 2N x
2N scattering matrix, where N is the number of occupied modes, which has the

block form
s=(nL m (3.28)
fLR TRR

The N eigenvalues of the transmission matrix ty; th; are the transmission coeffi-
cients T, (t; zt{ has the same eigenvalues by unitarity).

By far the most important result here is the Landauer formula for the conduc-
tance, which gives quantitative form to the idea that conductance is transmission

G=Go) Ty, (3-29)
n

where Gy = 2¢%/h ~ 7.75 x 107°Q~! is the quantum of conductance. For much
more, see (Nazarov and Blanter, 2009).

3.2 The scattering problem in three dimensions

We are now ready to begin our assault on three dimensions. We will see that
all* of the concepts we introduced in studying the one dimensional problem
have natural counterparts in 3D.



The scattering amplitude and cross section

We first seek an analog of Eq. (3.4), in which the wavefunction is written in
terms of an incoming plane wave and transmitted and reflected waves. Like
Eq. (3.4), its form is fixed by the idea that outside of the interaction region
an eigenstate should coincide with a solution of the free particle Schrodinger
equation, only deviating from such a solution inside.

Let’s write down the three dimensional version first, and then spend
some time discussing it. Introducing spherical polar coordinates with § = 0
corresponding to the direction of the incoming wave, we have

Y (r) =2 exp (ikz) + @ exp (ikr), (3-30)

where z = rcos 6. The first term represent the incoming plane wave, while
the second term is an outgoing scattered wave, which is the reason we have
exp (ikr) and not exp (—ikr).

The main difference from Eq. (3.4) is that Eq. (3.30) is not actually a so-
lution of the free particle Schréodinger equation. Rather, it is an asymptotic
solution, meaning that it comes closer to a solution as |r| — co.

Problem 3.5

Show this. How does the ‘correction” required to make Eq. (3.30) a
solution decay with r?

Eqg. (3.30) amounts to a definition of f(6,¢), which is called the scattering
amplitude. Note that it has the units of length.
The physical meaning of f(6, ¢) can be understood by once again con-
sidering the probability current, which in three dimensions has the form
if

j(r) = ~5m [T*VY -¥YVYH. (3.31)

Calculating the current using Eq. (3.30) gives
2
j(x) = % [2 + W}f';’))'f'} + (cross terms with exp (%ik[r — z]) factors).
(3-32)

There is also a contribution arising from the angular part of the gradient
operator acting on f (6, ¢). This contribution decays like 1/7% and will not
be important at large distances (it also points perpendicular to r, so doesn’t
contribute to the outward flux).

But what about the cross terms? The presence of the rapidly oscillating
factors exp (Lik[r —z]) = exp (+ikr[1l — cos 0]) means that the average of
these terms over some angular range quickly decays to approaches zero.
Any real detector has some finite angular resolution, and since the angular
range required to average out the cross terms scales like 1/ (kr), they may
neglected if the detector is far enough away.

Eq. (3.30) is not normalized. As discussed in AQP, in an infinite system
one can normalize states according to the flux they carry. This gives

8,
r2 ’

i) =2 |2+

r—00

(3-33)
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exp(ikr cos6))

- @ 17

Figure 3.3: Schematic of a scattering
experiment. The azimuthal coordinate
¢ corresponds as usual to rotation
about the 6 = 0 axis.

You might argue that Eq. (3.17) is

a closer analog of Eq. (3.30) than

Eq. (3.4), because of it represents a
division into incoming and scattered
waves, and we would not disagree.
But Eq. (3.17) was defined everywhere,
rather than just outside the interaction
region. We'll introduce the corre-
sponding expression in the 3D case
shortly.

The gradient operator in spherical
polarsis V =9, + gag 4+ 9

rsin®
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You might very well ask how a detec-
tor would tell the difference between
a scattered and an unscattered parti-
cle. This is one of the places that the
deficiency of our time independent
thinking shows up. In the wavepacket
viewpoint discussed earlier the in-
coming wave has both a finite extent
parallel and perpendicular to its
wavevector. Then the probability of
this wave hitting a detector at 6 # 0
and at a great distance is negligible.
Without developing this picture fur-
ther, Eq. (3.34) will have to remain
heuristic.

For a discussion of the history of this
theorem, see (Newton, 1976), which is
where this proof comes from.

Scatterer Screen

Figure 3.4: Finding the intensity of the
wavefunction on a screen.

The result is a simple picture of the flow of the probability current due
to scattering. The probability per unit time for a scattered particle to pass
through a solid angle element dQ) at coordinates (0, ¢) is

probability / time = j| (6, ¢)|*> Q. (3.34)

To define a quantity that depends only on the scatterer, we divide through
by the flux. The resulting quantity has the units of area and is called the
differential cross section

do probability / time 2

1qi0= o = £ (6, ) dQ. (335)
gg) is a functlon of 8 and ¢, though those arguments are normally omitted
because G (6, ¢) looks like a mess. The notation gg) is standard, but regret-

table: the dlfferentlal cross section is not the derivative of anything.

You can think of the differential cross section as the area of a wavefront
that is ‘routed’ to the element d(). Integrating over all solid angles gives the
total cross section

do
Grot = deQ / d¢>/ sinfdo 5 (3.36)

The optical theorem

The above picture of the probability current is nice and simple. It is also
wrong.

To see that we have a problem, consider integrating the probability cur-
rent Eq. (3.33) over a sphere centred on the origin. For a stationary state,
we should expect to get zero net flux (c.f. Eq. (3.9)). The plane wave con-
tribution, represented by the first term, gives zero, as anything passing in
through one hemisphere leaves through the other. So Eq. (3.33) implies

[176.9)Pd0 = ot = 0. 637

Which doesn’t sound good. The problem is that we have been too cavalier
with the cross terms in Eq. (3.32). Though it is true that averaging over a
small angular range zeroes out these terms when 6 # 0,6 = 0 has to be
treated more carefully. The result will be a relation between oyt and f(0 =
0) known as the optical theorem.

In Fig. 3.4 we consider again our scattering geometry, only now we erect a
circular screen of radius R a distance z away from the scatterer with z/R >
1, so that the solid angle occupied by the screen as seen from the scatterer is
very small.

Using Eq. (3.30), we find the square modulus of the wavefunction to be

2Re[f(8, ¢)e 2] ACT)]

7 72

[Fe(r)? =1+

When we are far from the scatterer we can evidently neglect the third term
relative to the first two. Furthermore

2 2
r=yR2+ P +2~z4 T 2+Zy,

For x, y values on the screen i.e. with X2+ yz < R?, the condition z/R > 1

z>>x,y

allows us to use this approximation, as well as to set f(6, ¢) equal to f(6 =



0) (of course, at 8 = 0 the ¢ variable is redundant). Thus on the screen we

can write
) Re[f(@ _ O)eik(xz—i-yZ)/Zz]

[¥i(r)? ~ 1+
Integrating over the screen gives

— )\ ikr?/2z
dr2mr |1+ 0)e ]

0

PR ACTEE
Screen

(3-38)

In the last line we have done the integral in the second term assuming
kR?%/z > 1, which is not inconsistent with the condition z/R > 1.

Finally we identify the second term, which reduces the value of the inte-
grated probability density below the value 77R? that we would get if there
were no scattering, with the total cross section oiot. Then we have

47t
Ttot = Imf(0 =0), (3:39)

which is the optical theorem. This final step may appear confusing: note
that we are not calculating a property of the screen (the result comes out to
be independent of R) but of the scatterer.

Thus our original expression Eq. (3.33) is not too much in error. The miss-
ing contribution that guarantees flux conservation is in the forward direction
only. If our detector is off axis, we have nothing to worry about.

The Lippmann—Schwinger equation

Next we turn to the 3D version of the Lippmann-Schwinger equation. In
fact, this can be written down without hesitation directly from Eq. (3.22)

Yi(r) = exp (ikz) + /dr’ G (5, ) V() ¥ (r). (3.40)

It remains only to find the correct form of the retarded Green’s function.
Recall that this is the function satisfying

2

Ex + ;—mvz G (rY)=6(r—7), (3.41)

and containing only an outward moving wave. Let’s write down the answer,
and then see why it is correct.

m exp (ik|r —r'|)

+ /Ny —
Cor) =5 =7

(3-42)

As in the 1D case, you can verify directly that Eq. (3.42) satisfies the free
particle Schrodinger equation when r # r'. To understand the origin of the
S-function, notice that as r — r/, the numerator can be neglected and

m 1

e L —
k 2mh? [t — |

(3-43)

Now recall that the Green'’s function for Laplace’s equation, satisfying

V2GL(rx) = 6(r— 1) (3-44)
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We have considered only the case of
elastic potential scattering, meaning
that the incoming and outgoing
energies are identical, and the target
is unchanged. In general there will
be inelastic scattering as well. For
example, if the scatterer is an atom
it may be ionised in the course of
scattering. Then the optical theorem
still applies, but with oy, including all
processes, both elastic and inelastic,
and f(0 = 0) the purely elastic
forward scattering amplitude.

Do you have trouble remembering

the form of the Laplacian in spherical
polar coordinates? For the radial part,
the following trick is helpful. It's much
easier to remember that the radial part
of the gradient operator is #d,. For
y(r) and ¢(r) functions of r only we
then have

[aro (V) =~ [dr(ve) (Vy)
=— ./47rr2 0r@ 0, P dr
= 471'/g08r <r28r¢> dr,

assuming boundary terms at infinity
vanish in the integrations by parts.
Then it’s clear that

V2= 5o, (P0rp).

This generalises to any dimension
straightforwardly.
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is just
1

GL(r, r/) - _m

(3-45)

The Ej; term in Eq. (3.41) is not involved in producing the J-function, and
therefore we have verified that Eq. (3.42) does the job.

If you found this a bit slick, a ‘constructive’ method using the Fourier
transform and contour integration is given in the appendix to this chapter.

Now, we would like to be able to check that the solution of the 3D
Lippmann-Schwinger equation Eq. (3.40) has the asymptotic behaviour
given by Eq. (3.30). To do this, we’ll need to investigate the behaviour of the

Green'’s function at large distances. First note that, if [r| > ||

r—t|~r—#-r. (3.46)

In the Lippmann-Schwinger equation, the argument r’ is always within the
interaction region. This suggests that, as [r| — oo, we can replace G* (r,1’)
with

m  exp (ikr)
27th? r
where k¢ = ki is the wavevector of an elastically scattered particle moving

Gt(r,¥) — —

exp (—ik¢-1'), (3-47)

in the r direction. With this replacement, the Lippmann-Schwinger equation

becomes
‘ m exp (ikr) .
Y (r) 2 exp (ikz) — o /dr’ exp (—ik¢-¥') V(r')¥i(r). (3.48)
Comparison with Eq. (3.30) allows us to identify
m .
F0,9) =~ [d exp (~ike V) VB (349

By itself, this equation is not very informative, as we still need to know
the wavefunction in the interaction region to find f(6,¢), but it’s a useful
starting point for approximations.

The Born approximation

As we already discussed in Section 3.1, one way to solve the Lippmann-—
Schwinger equation is by iteration, generating the Born series (c.f. Eq. (3.23)).
The lowest order approximation amounts to replacing ¥, (r') in Eq. (3.49)
with the unscattered plane wave, yielding the (first) Born approximation to
the scattering amplitude

m
27th?

fBorn(0,9) = — / dr' exp (—iq-r') V(r), (3.50)

where q = k¢ — k; is the momentum transfer in the collision. The initial
momentum k; = kZ. If you are wondering where the angles appear on the
right hand side: they determine k¢, which determines q. Eq. (3.50) gives the
differential cross section

2
I P
The Born approximation provides a very appealing picture of the relation
between the scattering amplitude and the interaction potential: the former
is proportional to the Fourier transform of the latter, evaluated at the trans-
ferred momentum.
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Problem 3.6

Find the scattering amplitude within the lowest Born approximation for
the spherical potential

V < o
Vi) =4 "’ Il < : (3.52)
0 |r| >a.

The Born approximation relies on ¥ (r) being close to a plane wave within
the interaction region. By examining the size of the correction in this region,

one can obtain the condition For attractive potentials, this means
2 that the potential is much too weak to
h form a bound state.
Ve < -y (3-53)

C

at low energies, where V; and 7. are respectively a characteristic energy
and length scale of the potential. Here, low energies means kr. < 1. In the
opposite limit, the fast oscillations within the interaction region lead to an
additional factor of kr., and the condition becomes

12
Ve € kre—, .
e (3:54)
and the Born approximation is always satisfied at high enough energies.
In AQP the Born approximation was derived using Fermi’s Golden Rule,
applied to the static potential V (r), to compute the rate of scattering between
plane wave states exp (ik; - r) and exp (ik; - r) as

27T
i = == | (k| Vik) 26(Ex, — Ex,)- (3-55)

It is instructive to compare the two derivations.

3.3 Partial wave analysis

The picture of scattering in one dimension was greatly simplified for parity
symmetric potentials by working with states of definite parity. Instead of
having to find a 2 X 2 unitary scattering matrix we had only to consider
phase shifts deyen odd for the two channels. We showed that the wavefunction
has the form

11[k(|x| > 0) = Ceven COS (k|x| - 5even) + Sgn(x)codd COoSs (klx‘ - 5odd) . (3.15)

An entirely analogous simplification occurs in three dimensions for spheri-
cally symmetric potentials V(r) = V(r) (which are of course quite common!).
In this case the relevant symmetry is much larger, corresponding to the con-
tinuous group of rotations, rather than the discrete parity transformation.

By working in a basis that transforms ‘nicely’3 under rotations, we can ob- 3 More properly, the basis forms a
group representation, but more about

tain scattering channels that decouple from each other. Of course, you are o
this in Chapter 6.

already familiar with such a basis: it is provided by the spherical harmonics
Yim (9/ 47) :
Time independent scattering states are solutions of the Schrodinger equa-
tion
h2

_%vﬁ}f(r) + V(r)¥(r) = E¥(x). (3-56)



46 AUSTEN LAMACRAFT

The Laplacian can be written

1 L?
V2= 50, (o) - 55
r r
where L = r X p is the orbital angular
momentum. It’s a useful exercise to
check this directly starting from

(r % p)* = X;Pex; Pk — X;PkXep;

and then using the canonical commu-
tation relations.

The spherical harmonics Y}, (6, ¢) are
eigenfunctions of L? with eigenvalue
RA(1+1).

There is some potential for confusion
here. Separating variables to find

the eigenvalues of the Laplacian in
cylindrical coordinates yields plain
Bessel functions J,(p) (of order «)
which satisfy Bessel’s equation

PI el (07— o) Ju =0,

The two are in fact related

p) = \/gflﬂ/z(f?)

Interestingly, while the Bessel func-
tions are in general not elementary
functions — meaning that they cannot
be built from combinations of expo-
nentials, logs and roots — the spherical
Bessel functions are, as Eq. (3.65)
makes clear.

Figure 3.5: The first two spherical
Bessel and Neumann functions.

We are going to seek a solution of the form

Y1 (0, ¢) Ry (7). (3:57)

The terms in the expansion are the partial waves that give this technique its
name. Substitution in Eq. (3.56) yields an equation for R;(r)

I(1
SUES)| A

d’R;, 2dR
d l+[k2 R, (3.58)

2 2mV (r)
arz2 " r dr 2

Just as in one dimension, the partial waves must satisfy the free particle
Schrodinger equation outside of the interaction region. For the partial waves,
the radial part satisfies Eq. (3.58) with zero on the right hand side. Writing
R;(r) = r;(kr) gives the equation

dr
L pdfl + [p —1(I +1)} r=0. (3.59)

o’

dp
The general solution of this equation is a superposition of two solutions j;(p)
and n;(p) known as the spherical Bessel function and spherical Neumann
function (of order [) respectively. You can think of these as roughly the 3D
versions of the sin(kx) and cos(kx) solutions of the free particle Schrédinger
equation in 1D. In fact, for | = 0, the equation

@ 2 drg

i + o dp +7ro= (3.60)

can be simplified by writing ro(p) = u(p)/p to give

W' +u=0. (3.61)

Then we have .
. sinp cosp
o) = 2L, molp) = - 2E,
Jo\p 0 Y 0

Note that jo(p) is finite as p — 0, while ng(p) — —p~!
Alternatively, we can work with the spherical Hankel functions

(3-62)

n" (0) = jilp) + imp) o
* 7 3 3
n ) = [ )]
which play the role of exp (+ikx). For example
exp (i
D (p) = SR UR) (364)

ip

ProucGHING through the properties of these functions can feel like a bit of
a mathematical death march. In fact, everything that we will need follows
fairly painlessly from Rayleigh’s formulas

i) = () (L) e

m(p) = — (—p) (:—)%)l

(3-65)

0s 0

o




Problem 3.7

Show that these functions satisfy Eq. (3.59).

Let’s use these formulas to obtain the behaviour at small and large argu-

ments.
Problem 3.8
Show that the asymptotic behaviour at small arguments is
. o'
ie) = o
@0 — 1)1 (3:66
n(p) = ——p5—
o
Hint: Write %% = 2% with u = p?
Problem 3.9
Show that for large arguments
. I
ji(p) = —sin ( - 2)
1 I
ni(p) — —ECOS < - 2) . (3.67)
(1) i . I
100+ —oe (i]p- 3 )

Eq. (3.67) substantiate the analogy drawn above between these functions and

sin(kx) and cos(kx) in one dimension.

Now, in considering the superposition of j;(p) and n;(p) (or hl(l) (p) and

hl(l) (p)) that form the partial wave outside of the interaction region, we are
going to appeal to the intuition provided by Eq. (3.15). Recall the chain of
argument that lead us to this result:

¢ Conservation of probability flux led to a unitary scattering matrix.

¢ Finding the scattering channels gave components in which the incoming

and outgoing wave are related by the phase shifts, because there is no
mixing between channels.

Since we have the scattering channels in the 3D problem, it’s hopefully
plausible that flux conservation relates the incoming and outgoing waves
in these channels by a phase shift only, so that up to an overall factor the
partial wave takes the form

. . 2 . !
1Y (0) exp (i5)) + 1 (0) exp (—id)) L <p — 7” + 51) . (3.68)

This defines the phase shifts in the 3D case.
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A really minimal derivation of this
property uses the substitution r;(p) =
u;(p)/p to write Eq. (3.59) as

uf + [ufil(ltl)} =0.
0

The series solution then must start
with a term p*1 or p~%.

It is not a problem that the wavefunc-
tion outside the interaction region
contains some contribution from the
Neumann function, which diverges at
the origin. Inside the interaction region
the wavefunction has a different form
because the potential V(r) is nonzero.
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The Legendre polynomials can be
generated from Rodrigues’ formula

1 d /, \n
Pu(x) = 2np! dxn (x 71) !

from which we see that the coefficient
of x" is 2n! (2n=1)1t
21 (n1)? n!
we'll use another property: P,(1) =1,
which you should also be able to
derive from here.

. In a moment,

Problem 3.10

Of course that’s a bit fluffy. So let’s compute the flux through a large
sphere of a wave with the general form

l .
2 ) [t (kr) + el (kr) (3.69)

||
I Mg

Use the asymptotic form Eq. (3.67) and the orthogonality relation for
the spherical harmonics

/. dQ) Yly;n (91 (P)Yl’m’ (9, 4)) = 01Oy - (3-70)

You should find

Flux = i
mk

gl; et = e 2] - (3-71)

uMg

This calculation is the analogue of that giving Eq. (3.10) in the 1D case.

Expansion of a plane wave

While this is all very nice, real scattering experiments do not involve spher-
ical waves, but a situation closer to that described by our earlier expression

¥i(r) — exp (ikz) + f(f),(i))

r—00 r

exp (ikr) . (3.30)

We want to connect the two pictures, and ultimately find the relation be-
tween the scattering amplitude f (6, ¢) and the phase shifts {9;}.

The first stage in that program is to find an expression for the plane wave
in terms of partial waves. Once we have done that, all we need to do is mod-
ify the outgoing partial waves by appropriate the phase shift.

We write a plane wave in the 42 direction as an expansion

exp (ikr cos0) = ia,jl(kr)Pl(cos 9). (3.72)

=0

This expansion contains no contribution from the Neumann functions n; (kr)
because these are singular at the origin, and only the m = 0 spherical har-

I
Yio(0,9) =1/ 2 4+ 1Pz(cos 0) (3.73)

by virtue of azimuthal symmetry. The functions P;(cos 8) are I order poly-

monics

nomials called the Legendre polynomials. Now it is straightforward to fix
the coefficients, because P;(cos 6) contains only cos? 0 for p < I and j;(kr)
contains (kr)? for g > I (c.f. Eq. (3.66)). Thus the I term of the expansion of
the left hand side, containing (kr cos6)’, arises only from the I'" term of the
right hand side,

=i'(21+1) (.74)



Adding the phase shifts

We write out this plane waves expansion once more, this time in terms of the
Hankel functions

[eo)

1
exp (ikr cos 0) E Z (2141) Pi(cos ) [hl(l)(kr) + hl(z) (kr)} . (3-75)

How should this expansion be changed to allow for the scattered wave? We
already know that the incoming and outgoing waves will be related by the
phase shifts J;. Now we invoke causality to argue that it must be only the
outgoing wave that is modfied, and hence

N =
[1e

Yr(r) = i (21 +1) Py(cos 6) [exp (2i6)) hl(l)(kr) + hl(z) (kr)} . (3.76)

=0

The scattered wave can then be found by subtracting off the plane wave
contribution. In the asymptotic region where Eq. (3.30) is valid, the yields
the desired relation between (6, ¢) and the phase shifts

0.9) = g L1+ 1) foxp (20a) ~ 1] Pi(cos0). 577

||[\13

The hard work is done, but there are a few relations still to work out. The
differential cross section is of course 4% = |f(6,¢)|*>. We get the total cross
section by integrating over solid angles and using the orthogonality relation
for the Legendre polynomials.

1 2
L Py (x)Pu(x) = 5= 0w (3-78)
to give
7_[ (e9)
Ttot = 43 Z 21 4 1) sin® 5. (3-79)

Because 0 < sin? d; < 1, the contribution ¢; that each partial wave can make
to scattering is limited by

4
0 < k—? (2I+1), (3.80)

which is known as the unitarity bound, and is saturated for J; = (n + %) T
for integer #, a situation known as resonant scattering.
As a check on the correctness of these formulas, we calculate

koot

Im £(6 N 47’

Z (21 + 1) sin? g, = (3.81)

_!
k
(We used the property P;(1) = 1) which is the optical theorem. Compared to
our earlier proof, this one is limited to the case of spherical symmetry, and
doesn’t give a clear sense of the underlying physics. On the other hand, it is
short.
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This is of course just the m = m’ = 0
case of Eq. (3.70).
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Problem 3.11

Let’s consider the case of the hard sphere potential

oo 1 <do

V(r) = { , (3.82)
0 r>ao

which is simple enough to allow explicit solution, at least for the ] = 0

partial wave.
1. Show that the phase shifts satisfy

ji(kas)
ny(kas)

= tand;. (3.83)

2. Find Jy explicitly, and show that at small k

kao 2141
6y(k) = — (ko) 3 (3-84)
(214+1) [(21 = 1)1
3. Find the low k limit of oct.
Problem 3.12
For the spherical potential of Eq. (3.52), show that
ka, ,
5o(k) = arctan o tank'as | — kao (3.85)

where k' = /2m (E — Vp)/h. Compare this with the Born approxima-
tion result of Problem 3.6.

3.4 Low energy scattering, bound states and resonances

The results of Problem 3.11 illustrate an important feature of scattering at
low energies: it is dominated by the s-wave (I = 0) component. To see this
more generally, we imagine solving Eq. (3.58) for the radial function R;(r)
from the origin to some point r outside of the interaction region, where it can
be expressed in terms of j;(p) and n;(p).

Problem 3.13

By matching R;(r) and Rj(r) to a linear combination of j;(p) and 1;(p),
show that the phase shift satisfies

kjj (kr) — vji (kr)
knj(kr) — yny(kr)

tan¢; = (3.86)

where v = R/(r)/R;(r). Deduce that §; — k*!*1 as k — 0.




The low energy behaviour of §y defines a length scale a, called the scattering
length by

do (k) — —ka.

— (3-87)

Thus, no matter how complicated the scattering potential, the behaviour of
the scattering at low energies is characterised by a single number.

To grasp its physical meaning, consider the equation for Ry(r). Making
the substitution Ry(r) = u(r)/r once more gives

7’12

—%&u(;’) + V(r)u(r) = Exu(r).

(3-88)
This is just the Schrédinger equation for 1D motion. u(r) obeys the bound-
ary condition u(0) = 04. Now consider the limit of zero energy, when the
right hand side of Eq. (3.88) vanishes. Outside of the interaction region the
behaviour of u(r) is extremely simple: it is just a straight line

u(r) = A(r —a). (3-89)

The fact that the intercept with the r axis is identified with the scattering
length follows from the form of the / = 0 partial wave

s1n[kr2;50(k)] — 1— ; (3.90)
By considering the form of the zero energy wavefunction inside the interac-
tion region, it’s not hard to convince yourself that repulsive potentials lead
to positive scattering lengths, while weak attractive potentials lead to negative
scattering lengths. However, stronger attraction can lead to a divergence of

the scattering length to —oo, followed by a return to positive values.

Problem 3.14

Confirm this behaviour of the scattering length for the spherical poten-

tial in Problem 3.12.

The divergence of the scattering length coincides with the formation of a
bound state. If the (positive) scattering length greatly exceeds the range of
the potential, it is possible to relate it to the bound state energy. The bound
state wavefunction has the form u(r) = exp (—«r) outside of the interaction
region, and we can identify x = a~!'. Then

K2 >

“om T 2ma? (3.91)

Ebourlcl =

TANGENT A somewhat related situation involves resonant scattering, in which
we ‘almost” have a bound state at positive energy (i.e. above the limiting value of
V(r) as |r] = o0). We can think of this as a bound state ¥res(r) weakly coupled to
the outside world.

Working in one dimension for simplicity, a minimal description of this situation is
provided by the Fano-Anderson model

hz
7%392511’(26) + t&(x)#)res = Ekl}r(x)

gresipres + tllj(o) = Ek¢res~

(3-92)
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+Why? Think about the kinetic energy.

Figure 3.6: Zero energy wavefunction
for a repulsive potential, leading to
positive scattering length.

Figure 3.7: (Top) Zero energy wave-
function for an attractive potential,
leading to negative scattering length.
(Bottom) Stronger attraction leads

to a diverging, and then a positive
scattering length.

wres
V()

i, ,
wvvw

Figure 3.8: Resonant scattering
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We close the contour by adding a
semicircle ‘at infinity” in the upper half
plane. Jordan’s lemma tells us that the
integral is unchanged.

The odd solutions are unaffected by the resonant level, as they vanish at the origin.
We write the even solutions as

Yeven(x) = cos[k|x| + deven (k)] (3.93)

The first of Eq. (3.92) tells us that

. m
sin deven (k) = ? Pres.- (3-94)

After solving the second for s we arrive at

m #2

tan deven (k) = e E
res —

(3-95)

The phase shift increases from 0 to 7t as we cross the resonance, taking the value
7t/2 when Ej = Ees.

Problem 3.15

Show that the reflection probability has the Breit-Wigner form

2
2 _ /4
‘I’(k)‘ - (Ek _ gres)z + ,)/2/4 (396)
for some 7.
3.A Finding the Green’s function
We promised a more methodical derivation of the Green’s function
Eq. (3.42). Starting from the defining equation Eq. (3.41)
Ex + h—ZVZ Gr(r,Y)=6(r—7) (3.41)
zm 7 7
we find that the Fourier transform
Gl d) = [ 29 Gy(a)exp (ia- [r— 7)) 697
' (27)?
satisfies ’
x m
K~ ] Gula) = 5 (3.98)
The Green’s function is then given by the integral
2m dq exp(iq-[r—r'])
Gr(r,t) = 72 (27.[)3 K2 — g2
© sin q|r -]
pr— d
n2h2|r “v| Jo / q4q (3-99)
eXP uilr —r)
dq,
27rzzh2|r r| / —q? 194

where in the second line we have done the angular integral, and in the third
we have extended the integral to whole of the real axis. This is done in order
to evaluate using the residue theorem. The integrand has poles at ¢ = £k,
which lie on the integration contour. The residues at these poles are

:F% exp (Lik|r—1') atg = =+k. (3.100)
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Notice that the residue at § = +k corresponds to an outgoing wave, while
that at § = —k corresponds to an incoming wave. As in our treatment of the
Airy function in Section 2.5, the physically relevant solution can be selected
by choosing the integration contour appropriately. In this case, the retarded
Green'’s function is obtained by including only the pole at g = +k.

An alternative to deforming the contour is to add an infinitesimal quan-
tity in the denominator

/°° exp(iglr —1'|)
27tzh2|r—r’| o k> —g?+ie

G (r,x) = qdy, (3.101)

which has the effect of pushing the pole at ¢ = +k up a little bit, and that at
q = —k down. Evaluating using the residue theorem gives Eq. (3.42).

Problem 3.16

Verify that Eq. (3.27), the Green’s function in 1D, is reproduced cor-
rectly by this method.

Propagator and Green’s function

Now is a good opportunity to connect the Green’s function with the propa-
gator of Chapter 2. Recall that the propagator is defined by

{ﬁla - H} K(r, t|t',t") = iné(x —1')6(t — t') and

ot (2.8)

K(r, t|Y,#') =0fort < t.

For a time independent Hamiltonian, we can represent the solution as a
Fourier integral over angular frequency as

K(r t|t,t') = /_O:o Ko (x|t') exp (—iw [t —t']) i—j: (3.102)
The first part of Eq. (2.8) tells us that K, (r|t’) satisfies
heo — H) Ko (xlr') = ind(x — ). (3103
Comparison of Eq. (3.103) and Eq. (3.41) suggests that for Hy = f—Vz
Ko (tt') & ihGy(r,¥') (3.104)

with hz%z = hw. But what about the second part of Eq. (2.8)? For t < t/

we can, by Jordan’s lemma, close the contour of integration in Eq. (3.102) in
the upper half plane. If the integrand is analytic in this region, the integral
vanishes, as required. From Eq. (3.101), we can see that the ‘+ie” prescription
that we introduced to move the poles in the appropriate way also has the
effect of making G;" (r,r') analytic in the upper half plane of w = gi so that

the Fourier integral over w has the desired property. Thus we conclude

Ko (x]r') = ihG (x,1'). (3.105)

This establishes the connection that we have been using all along between
the retarded nature of the propagator (in time) and the fact that G (r, ')
contains only outgoing waves.

53
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3.B  Formal scattering theory

It is sometimes useful — if only to produce more compact expressions — to
write the Lippmann-Schwinger equation in a basis independent, operator
form:

[¥x) = |ki) + GV [¥y), (3.106)

where |k;) is a plane wave state describing the incoming particle, and the
operator expression for the retarded Green’s function is

Gl = (Ex— Hp+ie) . (3.107)

Here we have used the ‘+ie’ prescription discussed above. The n'' order
term in the Born series can then be written

n times
—_——N—
kel GFV--- GV k). (3.108)
Using the normalization (r|k) = Translating the formula Eq. (3.49) for the scattering amplitude gives
exp (ik - 1) /(2)3/2
2mm
flkg ki) = — P (k¢|V[¥g) - (3.109)

It’s convenient to define a transition operator T by

Tlki) =V [¥x). (3.110)
From Eq. (3.106), we see that T obeys the operator equation

T=V+ VG;“T. (3.111)

The scattering amplitude is then given by the matrix elements of the transi-
tion operator between initial and final plane wave states

4’m
flke ki) = v (ke[ T k) - (3.112)
Note that T is not Hermitian by virtue As an illustration of this formalism, consider the following computation

of the “+ie’ in the Green’s function.
(Y| V[¥i) = (Fi|T|ki)
= (il Vi) + (¥ VG Tlk) (3.113)
= (ki| T ki) + (ki| T" G T|k;)

The left hand side is manifestly real.

Problem 3.17
By taking the imaginary part of the right hand side, show that this
yields (yet another) proof of the optical theorem. Hint: Use the formula

1
x+ie

= P% — irtd(x) (3-114)

where P denotes the principal value.
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3.C  The quantum point contact

This discussion is based on (Glazman
The quantum point contact (see Fig. 3.1) is a waveguide with width d(x) et al., 1988).

varying with position x along the contact. Motion along the contact in the

n™ transverse mode can be described by the one dimensional Schrodinger /
equation.
d()
n? )
—%a,% +&(x) | Y(x) = E ¥(x), (3.115)
where : 75\
n* m?n? Figure 3.9: Schematic ViE‘;V of a quan-
En(x) = m d(x)Z (5.116) tum point contact.

is the transverse quantisation energy at x. Close to the centre of the contact

we can write )

x
A(x) ~ do+ 3 (G117)
where R is the radius of curvature of the edge of the waveguide. In this

region Eq. (3.115) takes the form

1 n?
[—8)25 - 2knxﬂ Y(x) = (kz - ) ¥ (x), (3.118)
0
where -
47t°n
kn = dgiR (3.119)

Eq. (3.118) is an inverted harmonic oscillator, and is soluble in terms of
parabolic cylinder functions. However, there is a way to understand what is
going on without getting our hands too dirty. If the energy is large enough,
we expect the WKB form of the wavefunction to be valid (see AQP)

ok (5 ) resax’) + o (=5 /v,

(3.120)
Now recall the trick we used to solve the Landau—Zener problem in Sec-

Ywis(x) =

tion 1.3. There we used a path in the plane of complex ¢, the time, on which
adiabaticity was not violated to solve a non-adiabatic problem. In exactly
the same way, we can use a path in complex x to solve a problem in which
the WKB approximation breaks down for real x. In fact, it's more or less the
same problem, as the functions £p(x) that appear in the exponential are
identical to the E+(t) of Eq. (1.66).

The only difference is that the exponential factor analogous to Eq. (1.71)
is now the ratio of the reflection to transmission coefficients, because one
outgoing wave becomes the other as we pass around the branch point (c.f.

Eq. (3.5))
R > [2R _ kdg
T = exp (—znn do) , Zy = T n, (3.121)

where in the exponent we have made the simplification k2 — 2n?/ d% ~
2 (k — rtn/ do) for k ~ 7tn/dy.
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Problem 3.18
Verify this.
Using unitarity T 4+ R = 1 we can therefore find the reflection coefficient
exactly
1
R = (3.122)

1+ exp (znnz %) .

This shows that even for energies greater than the quantisation energy in the
middle of the waveguide there is overbarrier reflection, though the effect

is small because of the numerical factors in the exponent. This explains the
sharp conductance plateaux observed with relatively smooth constrictions
(c.f. Fig. 3.1).



4
Density matrices

There are known knowns; there are things we know that we know. There are
known unknowns; that is to say there are things that, we now know we don’t
know. But there are also unknown unknowns — there are things we do not
know we don’t know.

Donald Rumsfeld

The formalism of quantum mechanics that you have encountered up to
now is designed to deal with uncertainty. However, soon after the devel-
opment of the modern form of the theory, it was realised that a tool was
needed to describe a statistical distribution of quantum states. As we'll see,
such distributions arise in many situations, notably in quantum statistical
mechanics.

The appropriate concept, introduced independently in 1927 by von Neu-
mann, Landau, and Bloch, is the density matrix (or operator). Before we
define it, let’s see exactly why such a thing is necessary.

4.1 Two kinds of probability

Recall the Stern—Gerlach experiment of 1922 (AQP), in which a beam of
silver atoms was split in two by a inhomogeneous magnetic field, on account
of the spin 1/2 of the outermost electron. Supposing that the atoms are
independent, how should we describe the beam?

Recall that the most general state of a spin 1/2 is

~ [cos(8/2)e /2
In) = (Sin(9/2> ei(p/z.) (4-1)

This state has the property that it is an eigenstate of n - § with eigenvalue
+h/2, where
sin 6 cos ¢
n=|sinfsing | . (4.2)
cos 0
It’s clear that a single state of this form cannot describe the outermost elec-
tron of each silver atom in the beam. If this were the case, orienting the
magnetic field parallel to n would give a single, deflected beam, showing
that there was a preferred axis present.
We therefore need to describe the beam by an ensemble of quantum states,
characterised by a probability distribution P(n). The expectation value of
any observable O can then be written as the integral over the unit sphere

(0) = [ d40.P() (n|OIn). 43)
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The bar on the left hand side indicates we have taken an additional ensemble
average, as well as the quantum average denoted by the angular brackets.
We can rewrite this expression by introducing the operator

op = [ d0nP(n)[n) (n]. (4.4)

Then we have
(0) = tr[pp0], (4-5)
where tr denotes the trace. The operator pp is called the density matrix. One

immediate benefit of phrasing things in terms of pp is that it makes it clear
that P(n) contains a great deal of redundancy. pp is a 2 x 2 Hermitian matrix

Pb = Pp, (4.6a)
and therefore depends on only 4 real parameters, rather than a continuous
function. In fact, there is are two more conditions. By taking O = 1in
Eq. (4.5)

trpop = 1. (4.6b)

Thus there are only three real parameters. Finally, it is clear from the defini-
tion Eq. (4.4) and the positivity of the probability distribution that

(¥lop¥) >0 (4.6¢)

for all [¥). We say that pp is positive semi definite.

At this point let’s dispense with P(n) altogether, and define a density
matrix to be any operator satisfying the three conditions Egs. (4.6). The
expectation value of any observable is given by Eq. (4.5)

Problem 4.1

Show that the most general form of a spin 1/2 density matrix is

1

r
p=5l+5n-c (4.7)

for 0 < r < 1. Thus, the space of spin 1/2 density matrices is identified
with the unit ball (Bloch sphere).

The density matrix reflects our ignorance of the quantum state of the system.
A system described by a general density matrix is said to be in a mixed
state.

Since p is Hermitian, it has a representation in terms of its eigenvalues
and (orthogonal) eigenstates

0 =2 Pulga) (¢al - (4-8)
o
The conditions Eq. (4.6b) and Eq. (4.6¢) imply
ZP,X =1land P, > 0. (4-9)
14

Thus, although the definition provided by Egs. (4.6) looked abstract, we

see that it is equivalent to specifying a probability distribution {P,} on an
orthogonal basis of states {|¢)}, which could be discrete or continuous. The
expectation value Eq. (4.5) takes the form

@:Zpa (9| O] @) (4.10)
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Problem 4.2

What is the density matrix appropriate for spins in the Stern-Gerlach
experiment?

A pure state corresponds to having one of the P, = 1, in which case
0 = |¢«) (¢al, a projector on the corresponding state.
We'll return to the Stern-Gerlach experiment shortly, after we have dis-
cussed the density matrix in the position representation.
TANGENT Although we won't pursue it further, the representation of the den-
sity matrix given by Eq. (4.4) is often used in quantum optics and is called the P
representation. For modes of the light field |n) is replaced by a coherent state |«)
(see AQP), and integration over the plane of complex & replaces integration over
the unit sphere. In this context, the P representation is known as the Sudarshan—
Glauber representation (for which Glauber was awarded the Nobel prize in 2005 —
you may very well wonder what happened to Sudarshan).

Very roughly, the idea of this representation is to describe the quantum state in
terms of a distribution function of a classical quantity, such as an amplitude «

or spin direction n. However, this viewpoint is subject to various complications.
One drawback of the P representation is that it is not positive. That is, a non-
negative pp can correspond to a P that is not everywhere positive. An alternative
representation is the Husimi or Q representation

Q@) = ~ (alpla), (1)

which is manifestly positive. For more on the applications of these ideas in quan-
tum optics, see (Scully and Zubairy, 1997). The bible of coherent states is (Perelo-
mov, 1986).

The position representation

The density matrix is simple enough for the two dimensional space of spin
1/2, but in general we need to work with infinite dimensional spaces. Bar-
ring any mathematical mishaps, the defining conditions Egs. (4.6) carry over
to the general case. We can then form the position representation of the den-
sity matrix by taking matrix elements in the usual way

p(r,x') = (rlol'). (4.12)

In terms of the matrix elements of an observable O(r,t') = (r|O]r'), the
expectation value may be written

(0) = tr[p0) = [ drdv p(r,¥)O(,x) (4.13)

Problem 4.3

Show that the expectation value of the momentum is

@zih/drVrP(r,r’)’/ . (4.1)

r=r

In terms of the eigenvalues and eigenstates of the density matrix we have

p(rr') =) Pugy(r) gy (r) (4.15)
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Note the sign difference between
the von Neumann equation and
Heisenberg’s equation of motion

40 = 1 [H,0]. In the present case we

stay within the Schrodinger picture i.e.

the states are evolving, rather than the
obervables.

where ¢, (r) = (r|@s). The diagonal element of the density matrix
p(rr) =) Pulgy (1), (4-16)
o

gives the probability of finding the particle at position r. This is a general
feature of the diagonal matrix elements in any orthogonal basis.

4.2 Time evolution of the density matrix

The equation of motion of the density matrix is easy to obtain from the time
dependent Schrodinger equation describing the evolution of an arbitrary
state p

| = H|¥) . (4.17)

Applied to the spectral representation Eq. (4.8), this immediately gives the
von Neumann equation

do i
o5 = —p [Hel (4.18)

The formal solution of this equation is
p(t) = U(tt)p(t U (1), (4-19)

where U(t,t') is the unitary operator of time evolution. This evolution pre-
serves the eigenvalues {P,} of the density matrix.

Problem 4.4

Describe the evolution of the spin 1/2 density matrix of Problem 4.1
when H=H-S.

With the equation of motion in hand we can return to the Stern-Gerlach
experiment. The wavefunction of our spin 1/2 particles consists of a spin
component and a spatial part (the internal structure of the atoms can be
ignored, in the spirit of the adiabatic approximation), so our density matrix
has the general form

p11(x, r) oy (r, r). (4.20)

We suppose that the magnetic field varies only in a direction transverse to

<Pﬁ(fr ) ppy(nr) )

the beam direction, so the longitudinal motion of the particles factors out of
the problem. The Hamiltonian can then be taken to be
B2

H= —%8,2( — uB'xo, (4.21)

where B’ is the magnetic field gradient and y is the magnetic moment. Let
Yo (x,t) be the wavefunction of a particle in the absence of a field gradient.
In this case the density matrix would evolve as

1/2 0
p(x,x';t=0) = ( é 1/2> Yolx, )¥5 (2, t). (4.22)

The Hamiltonian Eq. (4.21) is diagonal in the spin, so we just need to find
how the wavepackets of an up spin and down spin particle evolve in the



presence of the field gradient. Because the gradient is constant, this turns
out to be very simple

¥i (x,t) = exp (i, (x,t) /1) ¥o(x F uB't*/2m,t), (4.23)
where the phase 6, | (x,t) is

(]/lB/)Zts

=+uB'xt— 2 .
01y (x,1) = EpB'xt — (424)

Problem 4.5

Prove this.

Notice that — apart from the phase factor — the effect of the gradient is to
shift the wavepacket to the point 3 B’t?/2m, which corresponds to the
classical trajectory of a particle in a linear potential.

The evolution of the density matrix is then

1 (Y. (x, t)¥i(x,¢t) 0
plexit)y =5 1 T . . (4.25)
2 0 ¥ (x, )¥] (1)
The diagonal elements take on a particularly simple form
o1 x38) = 3 [¥o(x — pB'E/2m, 1)
(4.26)

1
pr(x,xt) = §|‘I’O(x+ uB't? /2m,t)|?.

Remembering that the diagonal elements of the density matrix give the
probability to be in a particular location with a particular spin component,
we see that this describes the splitting of the beam into two.

Comparing Eq. (4.22) and Eq. (4.25), we see that in the first case the spin
and position degrees of freedom of the particles are independent of each
other — the density matrix factorizes — while in the second case they are
entangled’.

TANGENT The von Neumann equation is the quantum counterpart of Liouville’s
equation of classical mechanics

9% _
§ - = {p/ H}P 7 (4'27)
where p(q, p, t) is the phase space density and {-, -} denotes the Poisson bracket
_9f 9dg _9of 9g

{f.8}p = 3q 9p op oq (4.28)

Eq. (4.27) can be written as a continutity equation

9
Bit) +9; (vip) =0, (4-29)
and describes a flow in phase space due to the Hamiltonian vector field
oH ;
S =1...,N
o apz 1 7 7
0 — 30
’ {agﬁN i=N+1,...,2N, 430

where the first N coordinates are the positions and the second N are the momenta.
Note that in writing Eq. (4.29) we used the fact that the flow is incompressible
(9;v; = 0), which is the content of Liouville’s theorem.
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* This term was introduced by
Schrodinger, who called it ‘the charac-
teristic trait of quantum mechanics’.

Note the appearance of a partial
derivative on the left hand side of
Liouville’s equation compared to a
total derivative in von Neumann’s
equation. This is just because p in a
classical mechanics is a function on
phase space. We mention this because
Liouville’s equation is sometimes
written as % = 0, which includes the
variation due to the time dependence
of (q(t), p(t)), evolving according to
Hamilton’s equations.
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The resemblance between Eq. (4.27) and Eq. (4.18) is an example of the more
general correspondence

i
{ArB} — _ﬁ [A,B}, (431)
between Poisson brackets in classical mechanics and commutators of operators in
quantum theory.

Of course, this relationship is purely formal, as functions on phase space and oper-
ators in Hilbert space are very different things. A closer link may be established by
considering the Wigner function

o(qp) = ~/drp(q+r/2,q—r/2) exp (—%p-r) (4-32)

obtained by Fourier transforming with respect to the difference of the arguments of
the density matrix. ¢(q, p) is the quantum mechanical analog of the classical phase
space density, though in general it is not positive. The von Neumann equation
implies the equation of motion for ¢(q, p)

e)

where {-, -}, denotes the Moyal bracket

Goshi=pf@psin (5 000~ 053] )staph o

If we retain only the leading order term in 7, corresponding to the classical limit,
we recover Liouville’s equation.

Problem 4.6

Use Eq. (4.33) to explain why the linear potential in Eq. (4.21) has such a
simple effect on the evolution of the density matrix.

4.3 The density matrix in statistical mechanics

Perhaps the most important mixed state that we encounter is that describing
thermal equilibrium. Just as our ignorance of the microstate of a system
is described in classical statistical mechanics by a probability distribution
p(q, p) in phase space, so our ignorance of the quantum microstate of a
system corresponds to a density matrix.

There are a number of variants, according to the ensemble we work with.

¢ In the microcanonical ensemble, corresponding to fixed energy E and
number of particles, the density matrix takes the form

1
Pm = 7o oy Z |(sz> <(Pa| ’ (4-35)
N(E’ 5E) ac A(E,OE)

where the set A(E, dE) includes all energy eigenstates in the range
(E—0E,E+JE), and N(E,JE) is the number of such states, which is
needed to correctly normalize the density matrix. JE is a microscopically
large but macroscopically small energy interval, meaning that it contains a
large number of states but )E/E < 1.

¢ In the canonical ensemble, with fixed temperature T and number of
particles, we have

Pc = %eXP (—BH), (4.36)



where B = 1/(kgT), and kg is Boltzmann'’s constant. The normalization

factor that guarantees the trace of the density matrix is unity is called the

partition function

Z =tr[exp (—BH)]. (4-37)

Finally, in the grand canonical ensemble, with fixed temperature and
chemical potential y, we have

1
Pge = z exp (=B[H —uN]). (4.38)

The grand canonical partition function is defined just as in Eq. (4.37). The

difference from the canonical case is that the Hilbert space is now taken
to be the Fock space of many particle states, and includes states with
differing numbers of particles. More on this in Chapter 5.

Note that all of these density matrices, being functions of the Hamiltonian

(and number of particles in the grand canonical case), are constant in time.

The partition function and density matrix appear in a great many thermo-

dynamic relationships, of which we list expressions for the average energy,
Helmbholtz free energy F, and entropy S

E:Gﬂ:—;mz

F=—kgTInZ (4-39)

S=—ktr(plnp) = —k) PyInP;.

The above expression for the entropy is called the von Neumann entropy
(the corresponding expression in classical statistical mechanics is called the
Gibbs entropy).

Problem 4.7

Show that the von Neumann entropy follows from the first two expres-
sions in Eq. (4.39) and the definition F = E — TS of the Helmholtz free
energy.

Note that the von Neumann entropy does not coincide with the thermo-
dynamic entropy of an isolated system out of equilibrium, because it does
not change in time.

Problem 4.8

Prove this.

However, the von Neumann entropy is useful for other things. In particu-

lar, it measures the departure from a pure state, where it vanishes.

The canonical density matrix

As you will be aware, most calculations in statistical mechanics are more
easily done at fixed temperature than fixed energy, making the canonical
ensemble preferred over the microcanonical ensemble.
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The same expression appears in
information theory, where it quantifies
the information content of a message
and is known as Shannon entropy,
after Claude Shannon. It was von
Neumann who suggested the name to
Shannon, saying: “You should call it
entropy, for two reasons. In the first
place your uncertainty function has
been used in statistical mechanics
under that name, so it already has a
name. In the second place, and more
important, no one really knows what
entropy really is, so in a debate you
will always have the advantage.’.
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2 The signature of a permutation is
equal to +1 for permutations involv-
ing an even number of exchanges, and
—1 for an odd number.

In quantum statistical mechanics, there is another reason to favour the
canonical ensemble. p. closely resembles the time evolution operator

U(t) = exp (—iHt/h), (4-40)

except that we ‘evolve’ for an imaginary time ¢ = —ifi3. The wonderful
thing about this observation is that all of the techniques that are available to
compute the time evolution of a quantum state can immediately be applied
to calculate the density matrix.

The evolution is of course not unitary, but this is more of a blessing than
a curse as the usual result is to improve convergence in numerical work: the
density matrix is real, indeed positive, rather than complex and oscillating.

From our calculation of the free particle propagator Eq. (2.13) , we can

02 m(r —1')?
exp | — T

immediately write down

(t/ exp (—BH) |} = ( (4.41)

m
27
Calculating the normalization for a particle in a box of volume V gives the

partition function
14

Z= 75 (4-42)
3
AdB
where Agp is the thermal de Broglie wavelength
27 pi?
AdB = - .
dB p (4-43)
Thus we obtain the density matrix
1 mtlr — 1|2
Ptree(1, ') = — exp ( ' (4-44)
4 Adg

which nicely captures the intuition that at finite temperature a particle has a
typical wavelength Agp.

Quantum degeneracy corrections to the ideal gas law

To see the density matrix in action, let’s compute the partition function of
a gas of indistinguishable non interacting particles. To take into account
indistinguishability, we must work with totally symmetric or antisymmet-
ric wavefunctions depending on whether we are dealing with bosons or
fermions (see Chapter 5 of these notes). This means that we take matrix
elements of the density matrix between the states

1
r{,...,r = — P)l|rpy,...,r . .
|1y N)S/A N;US/A( ) [tp1 PN) (4-45)

The sum is over all N! permutations P of N objects. We have introduced
s/ 4 in order to write the following expressions in a unified way for bosons
(S) and fermions (A). Thus #5(P) = 1 and 74(P) = sgn(P), the signature of
the permutation?.

In this way we find the expression for the N particle partition function

1 s
ZN = WZ/aln---drl\;;ys/A(P)exp —TZ;Irj—rp]’\z . (4.46)
N'AGR T Ads j=1
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This is a rather fearsome looking expression, but it has a simple meaning;:
when taking the trace of exp (—BH) we have to account for the fact that
the diagonal elements of the density matrix are those where the two sets of
particle position labels differ by a permutation.

Of course, evaluating it is another matter! We can, however, make
progress in the limit of high temperatures, where the de Broglie wavelength
is short. Then the non trivial permutations in Eq. (4.46) hardly contribute,
because some of the Gaussian factors that appear will be small.

Retaining only the identity permutation, we get

N

1 (Vv

IN~ () : (4-47)
NI\ A3,

Eq. (4.39) and p = —3—5 |T for the pressure then give the ideal gas law pV =
NkgT.

We can do a bit better than this without too much effort, by taking into
account those permutations that involve only a single transposition, as these
will evidently be the next largest.

Problem 4.9

Show that this yields the correction to the ideal gas law

Aan
with the minus sign for boson and the plus sign for fermions. n = % is

the density.

Coming from high temperatures, where nA3; < 1, this is the first indica-
tion of a difference in the thermodynamic behaviour of ideal Bose and Fermi
gases. Of course, you know that when nA3; ~ 1 this difference is very pro-
nounced, with the possibility of Bose-Einstein condensation in the case of
bosons.

It’s interesting to ask how condensation appears in this framework. Any
permutation can decomposed into set of cycles. For example, the permuta-
tion (1,2,3,4) — (4,2,1,3) can be written as the cycle1l — 4 — 3 — 1
and the trivial cycle 2 — 2. In deriving Eq. (4.48) we just took into account
1-cycles and 2-cycles.

(Feynman, 1953) conjectured that condensation is associated with the
appearance of a finite density of infinite cycles in the thermodynamic limit, an
idea that was later established rigorously.

TANGENT Of course, for noninteracting particles, the above calculation is most
easily handled within the grand canonical framework. The canonical picture
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really comes into its own as a numerical tool called the path integral Monte Carlo I I R

method. The idea is to represent the partition function of an interacting system 10; gi @@ gs? @
just as in Eq. (4.46), but with the corresponding propagator taking the place of r R e 1
the free propagator. Because we are working in imaginary time, the integrand for 5; ! % i % ]
bosons is a positive quantity that can be interpreted as a probability distribution - i’@g &8 ‘@g i o
on the space of paths and sampled accordingly. This method has been successfully o 3 ! ]
applied to the study of superfluid Helium, Feynman’s original concern in the work ! gﬁg @@ gg é
mentioned above. s D 1 ]
Dol TEE TR e

o ge WY g

- ‘10‘ — JS — (()A‘) 5‘ ‘ 1‘0

Figure 4.1: Path integral Monte Carlo

trajectories of six Helium atoms

(periodic boundarv conditions) From
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This mathematical term for making a
larger space out of two smaller spaces
in this way is fensor product. It’s not
hard to see that the dimension of the
resulting space is the product of the
dimensions of the constituent spaces.

Unfortunately, the minus sign in the case of fermions stymies the straightforward
application of this method, a situation generally known as the fermion sign prob-
lem.

4.4 Density operator for subsystems and quantum entanglement

We introduced density matrices to describe a situation where the quantum
state of a system is not definite, but drawn from a probability distribution.
We didn’t address the question of how such a situation arises in the first
place. Of course, the density matrix could just represent the incompleteness
of our knowledge of the quantum state. Here, we discuss another natural
way in which the density matrix appears when we consider a subsystem of
a larger quantum system, itself described by a pure state. We will encounter
again the notion of entanglement, which we met briefly in Section 4.2. In this
section we are going to explore this a little more deeply, using a pair of spins
as our main example.

Two spins 1/2 are described by a four dimensional Hilbert space, spanned
by the following basis of states

[A) =11, [B) =111 )2

1C) =111 D)2, D) = 1)1 [4), - (4.49)

Here |1) and ||) are eigenstates of 0, with eigenvalue +1, and the labels 1
and 2 are just to emphasize that we are dealing with the first or second spin
(although the position also tells us which).

A pure state of the two spin system is described by the density matrix

P2 spin = |¢> <¢| (4-50)
where |¢) is some linear combination of the states in Eq. (4.49).
|¢) = a|A)+B|B) +7|C)+4[D) (4-51)
Note that p3 spin is @ 4 X 4 matrix. Its explicit form in the above basis is

&> ap* ay*  ad
pa* [B[* By* Bo*
ot Bt P et
sa*  6BF vt 6]

02 spin = (452)

As we know, any expectation value can be computed by multiplying the
corresponding operator by the density matrix and taking the trace

{0) = tr [p25pin @] = ($|O|9), (4-53)

which in this case is just the pure state expectation value. Now, suppose that
the operator O lives in the Hilbert space of the first spin, e.g. O; = 0;1. The
expectation value is then

©1) = (JaP +1812) ¢t 101 1)+ (Iv 2+ 1) (L 10| 1)
(a4 B*8) (T 1O] L) + (ay™ + B5*) (L |O] 1) (4-54)
= tr[plreducedo]
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where in the last line we have defined the reduced density matrix

_ (| + 1B ayt +po*
Plred = (0&*’)/4—[3*5 |,)/|2_|_ ‘5|21 (4~55)
in the |1, ), basis of spin 1.
In general pq oq describes a mixed state of spin 1. More generally, we can

write
Plred = tzr[F)Z spin] (4-56)

where tr; |- - - | denotes the trace over the space of spin 2. To get a feel for
what this means, compare Eq. (4.52) and Eq. (4.55).

The reduced density matrix contains all the information we need about
the system if we only ask questions (= make measurements) on spin 1.

Problem 4.10

What about the converse problem? That is, for any density matrix of a
single spin, is is possible to view it as the reduced density matrix of a

pure state of two spins? If so, is the pure state unique? This process is
called purification of a density matrix.

The reduced density matrix can be treated like any other density matrix.
Its lack of purity is a reflection of the entanglement between the two systems
that prevents us describing the subsystem by a pure quantum state. We saw
that the von Neumann entropy of a density matrix can be used to measure
the departure from a pure state. Therefore the quantity

Sent = —tr [Pred 1ngrecl] ’ (4-57)

measures the degree of entanglement between two subsystems, and is
known as the entanglement entropy.
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5
Second quantization

Each photon then interferes only with itself. Interference between two different
photons never occurs.

Dirac, Principles of Quantum Mechanics
Dirac was wrong about this, as we’ll

A system of N particles is described by a wavefunction of N position see in this chapter.
arguments ¥(ry, 1y, ..., ry). For indistinguishable particles, you will have
already met the idea that the wavefunction should be taken to be totally
symmetric or totally antisymmetric under exchange of any pair of particles
(see AQP). We'll review this idea and its consequences in the next section.

The wavefunction language is not a convenient one, however, when we
come to discuss the quantum mechanics of a truly macroscopic number
of particles. Only in certain special cases can a compact expression for the
wavefunction be obtained for an arbitrary number of particles (we’ll meet
such an example shortly). Even then, evaluating observables typically in-
volves integrals over every particle coordinate: an arduous task. Fortunately,
there is a formalism that is well suited to the general case, in which indis-
tinguishability is built in from the outset rather than imposed upon the

wavefunction. This formalism is called second quantization. The name is very obscure, but will
become a bit clearer later.

5.1 Quantum indistinguishability: bosons and fermions

A pair of particles is described by a wavefunction ¥ (y, x). If the particles
are indistinguishable, the associated probability density must be unchanged
upon exchange of the positions of any pair? " This is what we mean by indistin-

guishable.
[¥(y, 0 = [¥(xy) (5.1)

More precisely, ¥(x,y) and ¥(y, x) must correspond to the same quantum
state, meaning that they can differ only by a (constant) phase

¥(y,x) =¥ (x,y).
What can we say about 6? Take another two positions x’, and y’, then
¥y, x) =¥ (x,y),

but there’s nothing to stop us taking x = y/, and y = x/, in which case we
can combine these two expressions to give

‘P(X, Y) = eZiG\P(X, Y) (5-2)

that is ¢ = +1 and the wavefunction for two particles is either symmetric or
antisymmetric.



70 AUSTEN LAMACRAFT

*In a real two-electron system overall
antisymmetry is guaranteed by the ap-
propriate choice of spin wavefunction.

Easy for us to say. Here’s Dirac again:
‘The solution with antisymmetrical
eigenfunctions, though, is probably
the correct one for gas molecules, since
it is known to be the correct one for
electrons in an atom, and one would
expect molecules to resemble electrons
more closely than light-quanta.” (Dirac,
1926)

A more formal approach is to consider the exchange operator P;, that
exchanges the two arguments

Pp¥(xy) =¥(y,x)

which is evidently a linear operator that furthermore squares to give the
identity P122 = 1. The eigenvalues of Pj, are therefore £1, with the corre-
sponding eigenstates being symmetric or antisymmetric respectively.

The exchange operator commutes with the Hamiltonian of a pair of iden-
tical particles. As an example, consider the Hamiltonian for a pair of elec-

trons
hZ 2

2m, [v’z‘ + Vﬂ + [x —y]

evidently it doesn’t matter whether we apply P;; before or after H. Thus

H=-—

(5-3)

[H, P1;] = 0 and basic ideas of quantum mechanics tell us that

1. Eigenstates of the Hamiltonian have definite exchange symmetry?>.

2. The symmetry of the wavefunction is a constant of the motion.

From two to many

What changes when we consider systems of N identical particles? The wave-
function is now a function of the N coordinates ¥ (rq, 13, ..., 1n), and we can
consider an exchange operator P;; that swaps the ith and j arguments. The
same physical reasoning as before singles out eigenstates of the {P;;}. Note
that [Py, P3] # 0, and thus one might worry whether it is mathematically
possible to have a simultaneous eigenstate of all the P;;. We see straightaway
that a totally symmetric state with all eigenvalues equal to +1 is allowed.
What about a totally antisymmetric state with all eigenvalues —1? This too is
possible for the following reason. Any given permutation may be written

in many different ways as a product of exchanges (see the next problem for
an example). For a given permutation, however, these different possibilities
either involve only even numbers of exchanges, or only odd numbers, a fact
we’ll prove below.

Problem 5.1

By showing that PjpP)3Pjp = Pj3 = Po3PipPa3 prove that a simultaneous
eigenstate of all the P;; must have all eigenvalues +1 or all —1, that is,

be totally symmetric or totally antisymmetric.

All of this shows that any given species of quantum particle will fall
into one of two fundamental classes: symmetric bosons and antisymmetric
fermions, named for Bose and Fermi respectively (the whimsical terminol-
ogy is Dirac’s). The distinction works equally well for composite particles,
provide we ignore the internal degrees of freedom and discuss only the cen-
ter of mass coordinate. All matter in the universe is made up of fermions:
electrons, quarks, etc., but you can easily convince yourself that an even
number of fermions make a composite boson (e.g. a *He atom with two elec-
trons, two neutrons and two protons) and an odd number make a composite
fermion (*He has one fewer neutron, which in turn is made up of 3 quarks).



If we dealt with distinguishable particles, the wavefunction of a pair of
particles in states ¢ and ¢, would be

¥ (r1,12) = @1(r1) 2(12). (5-4)

Accounting for indistinguishability, we have either

¥(ry, 1) = 2[4)1@1)4)2@2) + ga(r1) 1 (12)] (5.5)

with the upper sign for bosons and the lower for fermions. Note in particu-

lar that when ¢; = ¢, the fermion wavefunction vanishes. This illustrates the

Pauli exclusion principle, that no two identical fermions can be in the same
quantum state. There is no such restriction for bosons.

Problem 5.2

Classically, if you had a function Pj(r;) describing the probability den-
sity of finding particle 1 at position r1, and the corresponding quantity
for an independent particle 2, you would have no hesitation in conclud-
ing that the joint distribution is

Pyp(r1,12) = Py(11)Pa(12). (5-6)

This also follows from taking the square modulus of Eq. (5.4). What is
the result implied by the wavefunction Eq. (5.5) for a pair of identical
bosons or fermions?

Most people find this result rather counterintuitive. It shows that, because

probabilities arise from the squares of amplitudes, identical particles in
quantum mechanics are never truly independent.

O O

Problem 5.3

One dramatic illustration of this deviation from our classical intuition is
provided by the Hong-Ou-Mandel effect in quantum optics (Fig. 5.1).
In simplified terms, we imagine wavepackets describing two bosons
approaching a 50:50 beam splitter from either side. Because of the uni-
tarity of scattering, the two bosons end up in orthogonal states. For
example,

\2 (|Left) + [Right)). (5.7)

Apply the result of the previous problem to deduce the probabilities of
the four possible outcomes.
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The 1/v2 yields a normalized wave-
function if ¢1(r) are orthonormal.

Figure 5.1: Four possible outcomes af-
ter the passage of two bosons through
a beam splitter.
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3 We will frequently switch between
the wavefunction (¢(x)) and bra-ket
notation (|¢)). In the latter notation the
product wavefunction in Eq. (5.4) is
written |@1) |@2).

The normalization factors yield nor-
malized wavefunctions if the single
particle state |¢,) are orthonormal (as
the eigenstates of the single particle
Hamiltonian are).

The Hamiltonian of a system of N identical noninteracting particles is
a sum of N identical single particle Hamiltonians, that is, with each term
acting on a different particle coordinate

h2
— V2 4+ V(x)

o (5-8)

N
H=),
i=1

where m is the particle mass, and V (r;) is a potential experienced by the
particles. Let’s denote the eigenstates of the single particle Hamiltonian by
{p«(r)}, and the corresponding eigenenergies by {E, }, where « is a short-
hand for whatever quantum numbers are used to label the states. A set of la-
bels {ocl-} i =1,2,...N tells us the state of each of the particles. Thus we can
write an eigenstate of N distinguishable particles with energy E = Zfil Ey; as3

[P oyap-an) = Py (11) Pay (11) - - Puyy (11). (5-9)

A general state will be expressed as a superposition of such states, of course.
As we've just discussed, however, we should really be dealing with a totally
symmetric or totally antisymmetric wavefunction, depending on whether
our identical particles are bosons or fermions. To write these down we intro-
duce the operators of symmetrization and antisymmetrization

1 1
S= NI ZP:P, A= NI XP:sgn(P)P. (5.10)

The sums are over all N! permutations of N objects, P denotes the corre-
sponding permutation operator, and sgn(P) is the signature of the permuta-
tion, equal to +1 for permutations involving an even number of exchanges,
and —1 for an odd number. This allows us to write the totally symmetric
and totally antisymmetric versions of Eq. (5.9) as

[ N!
‘leﬂéz-"(kz\] (1‘1, <o IN = WS Pay (rl)q)lxz (1‘2) T QPay (rN)

(¥ iy ) = VNIA Gy (1) 905 (12) -+ Py (1n)  (5:10)

Such states are called product states. The normalization factor in the boson
case involves the occupation numbers {N, } giving the number of particles
in state a. In the fermion case each Nj, is either 0 or 1 so the prefactor sim-
plifies. Since the order of the « indices is irrelevant in the boson case, and
amounts only to a sign in the fermion case, states based on a given set of
single particle states are more efficiently labeled by the occupation numbers.
In terms of these numbers the total energy is

N
E=) Ey =) NuE (5.12)
i=1 8



Problem 5.4

Find
1. The totally antisymmetric state of three fermions in states ¢1, @2,
and @3

2. The totally symmetric state of three bosons, with two in state ¢; and
one in state ¢;.

Problem 5.5

Verify that the normalization factors in Eq. (5.11) are correct.

A more formal way of putting things is as follows. We first consider the
space spanned by states of the form Eq. (5.9). Then we introduce the oper-
ators S and A, noting that S2 = S and A? = A. In other words, there’s
no point symmetrizing or antisymmetrizing more than once (we say that
the operators are idempotent). Any eigenvalue of one of these operators is
therefore either one or zero. The states with & = 1 are the symmetric states,
and those with 4 = 1 are antisymmetric. You can easily convince yourself
that if a state has one of S or A equal to one, the other is zero. This defines
symmetric and antisymmetric subspaces, consisting of the admissible boson
and fermion wavefunctions.

Note that the fermion wavefunction takes the form of a determinant (usu-
ally called a Slater determinant4)

q)lxl(rl) 90061(r2) (PM(I‘N)
L | @ay(r1)
’T£a2-<<aw>:m ...1
Pay(r1) 0 Pay(IN)

The vanishing of a determinant when two rows or two columns are identical

(5.13)

means that the wavefunction is zero if two particle coordinates coincide
(r; = 1)), or if two particles occupy the same state (a; = «;).

TANGENT We pause here to note that the above arguments — which appear in
most textbooks in one variant or another — suffer from a deficiency that remained
undiscovered until (Leinaas and Myrheim, 1977). The weak point is that nothing
requires that the wavefunction of a pair be single-valued, as we tacitly assumed in
writing Eq. (5.2).

Let’s examine the argument a little more closely. Imagine our pair of particles
remain always at the same distance from each other, and only relative motion is
important. In terms of the unit vector n = (x —y) /|x — y|, an exchange then corre-
sponds to n — —n i.e. tracing a path on the unit sphere that starts and finishes at
antipodal points. A double exchange corresponds to a complete circumnavigation.
We associate a phase factor ¢?? with this path. Assuming that this phase is inde-
pendent of the path, we can now consider contracting this path to nothing, which
shows that our original conclusion that ¢? = 1 is solid.

The situation changes drastically if we consider particles confined to two spatial
dimensions. Then our double exchange corresponds to going once around a circle.
Such a path cannot be deformed smoothly to nothing, and as a result ¢?? can

in principle be anything at all. Particles whose statistics lie in this continuum of
possibilities between bosons and fermions in two dimensions were dubbed anyons
by Frank Wilczek (Wilczek, 1982).
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4 Though it appears first in (Dirac,
1926).

Compare this situation with our dis-
cussion of Berry’s phase in Section 1.4.
In that case the phase accumulated
does depend on the path, because

the associated vector potential has a
non-zero ‘magnetic field’. This has a
dynamical effect even for a classical
particle. The present discussion is
more closely related to the Aharonov—
Bohm, which you met briefly in AQP,
where the particle moves in a region of
zero magnetic field.
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Of course, our world is three dimensional, which seems to make this possibility of
limited interest. Even if we happen to confine particles to two dimensions, the fact
that they can really move in three means that the original argument applies. This
reasoning does not hold, however, for collective excitations of a many body system
confined to two dimensions. Remarkably, anyonic excitations do in fact occur in
the fractional quantum Hall effect, a phenomenon observed in two dimensional
electron systems in high magnetic fields.

5.2 Example: particles on a ring

Let’s consider perhaps the simplest many particle system one can think of:
non-interacting particles on a ring. If the ring has circumference L, the single
particle eigenstates are

27inx

1
Pn(x) = \ﬁexp <L> , n=0,+1,42,... (5.14)

with energies E,;, = 2 L2 Let’s find the N particle ground state. For bosons
every particle is in the state ¢y with zero energy: Ny = N. Thus (ignoring
normalization)

¥ (x1,x0,... %) = 1.

That was easy! The fermion case is harder. Since the occupation of each
level is at most one, the lowest energy is obtained by filling each level
with one particle, starting at the bottom. If we have an odd number of
particles, this means filling the levels withn = —(N —1)/2, —(N —
3)/2,...,—1,0,1...(N — 1) /2 (for an even number of particles we have
to decide whether to put the last particle at 1 = £N/2). Introducing the
complex variables z; = exp(27ix;/L), the Slater determinant in Eq. (5.13)

becomes
Zl—(N—l)/z Zz_(1\7—1)/2 o ZXI(N_l)/Z
Zf(N73)/2
l PR .« e .« e .« e (5.15)
AN N

Let’s evaluate this complicated looking expression in a simple case. With
three particles we have

-1 -1 -1
Zl Zy Zg

Figure 5.2: Nodal surfaces x; = X; for Z1 ) Z3 Zl Z2 Z3

three fermions. Because of the periodic 1 1 l|l=——7=+—- == (5-16)
e . V) Z1 Z1 Z3 Z3 Zn

boundary conditions, the three dimen- z1 Zy Z3

sional space of particle coordinates is

divided into two regions, correspond- _ 23 (5.17)
ing to the even (123, 231, 312) and odd 23 Zy 5-17
(132, 321, 213) permutations.
’ o sin 7[961 0 sin [x3 — sin il = %3]
L L L '
(5.18)

The vanishing of the wavefunction when x; = x; (see Figure 5.2) is consistent
with the Pauli principle. You should check that additionally it is periodic
and totally antisymmetric.



Problem 5.6

Show that this generalizes for any (odd) N so that Eq. (5.15) is propor-
tional to
B (7l — ]
Hsm _— (5.19)
L L
i<j

You will need the Vandermonde determinant

N
Zl Z2 o« o o o« o e
2 2 =[1@zi—z) (5-20)
ZlN 1 132 L Na|
.o .Zl Zz o o o ZN

which can be proved in a variety of ways. Proving directly that
Eq. (5.19) is an eigenstate of the Hamiltonian is not easy, but can be
accomplished using the identity

cot(x —y) cot(y — z) + cot(y — z) cot(x — z) 4+ cot(z — x) cot(x —y) = 1.
(5.21)

Check carefully that Eq. (5.19) is periodic and totally antisymmet-

ric. Note that explicitly finding a totally antisymmetric function of N

variables is tantamount to proving the statement of Section 5.1 that a

given permutation can be written in terms of only even numbers of

exchanges, or only odd numbers, not both.

Let’s take the opportunity to introduce some terminology. The wavevector
of the last fermion added is called the Fermi wavevector and denoted kr. In

(N-1)m
L

this case kr = . The corresponding momentum pr = fikr is the Fermi

. 12Kk .
momentum; the corresponding energy Er = —.F the Fermi energy, and so

on.

5.3 Creation and annihilation operators

We have already gleaned the essential idea of second quantization. Instead
of working with totally symmetric or antisymmetric states ‘\Pi{ "é"'“N >, we’d
rather label states purely by the occupation numbers that describe how par-
ticles populate the single particle states. The second quantization formalism
is based upon creation and annihilation operators that add and remove
particles from the one particles states, that is, change the occupation num-
bers N,>. We generally want the number of particles to be conserved, so
observables of interest are typically products of equal number of creation
and annihilation operators whose overall effect is to redistribute particles
among the single particle states. The operators are defined by their effect on
the states in Eq. 5.9. A first guess at defining a creation operator that puts a
particle in state |¢,) would be

? — ———
Cp |T9¢19¢2"'“N> — VN +1 ‘q)ﬂt> |‘F’X1’X2“"XN> =VN+1 |\F“‘X1’X2“'D‘N> (5'22)

(the origin of the /N + 1 will become clear shortly). This operator acts
on a state with N particles and produces one with N + 1 particles. Since
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51t is often convenient, but by no
means necessary, to chose the single
particle states { ¢, } to be eigenstates of
the single particle Hamiltonian, as we
did earlier.

Formally, the space of distinguishable
n times
———
N particle states is Hy = H1 ® - - - Hi.
The creation operator acts in the space
CPHH,1®HyP -, or rather the
symmetric subspace of this space,
which is called (bosonic) Fock space.
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any state can be written as a linear combination of the states {|¥a,uy--.ap) }»
the action of ¢, can be extended to any state by linearity. Eq. 5.22 has an
obvious shortcoming, however, in that it does not preserve the symmetry of
the wavefunction. This is easily remedied by applying the symmetrization
operator that we introduced in Eq. 5.10 after adding a particle (we discuss
the boson case first), so a better definition is

CIJ( : “Iji]ﬂéz---ﬂq\[> % \ N+]‘S |q)lX>

T§1az--<aw> , for bosons. (5.23)

Problem 5.7

Bearing in mind the normalization factors in Eq. 5.11, show that this

implies
CIX : ‘Tglaz'”txl\]> — \% NIX + 1 "YIJSWQIXZH-BKN> : (524)
If we label totally symmetric states by their occupation numbers, so that
\Tﬁlaz,,,m> = |Np, N7 ...), this equation may be written
¢y |No, N1, ... Ny,...) = /Ny +1|Ny,Np,... N +1,...). (5.25)
By considering matrix elements (N, Ny, ... | ca | N, Nj,...) we can conclude
¢! |No,Ni,... Ny, ...) = /Ny |[No, Ny, ... Ny —1,...). (5.26)

In other words, the conjugate of the creation operator is a destruction opera-
tor, that removes one particle from a given state. From Eq. 5.25 and Eq. 5.26
come the fundamental relationships

[cl,cﬁ} = 5“5
{c“,cﬂ] = [c},c}} =0. (5.27)

For reasons that will become clear shortly we normally write things in terms

of the annihilation operator a, = ¢, in which case the above takes the form

[u“,a;g] = Oup
[ua,aﬁ] = {al,aﬂ =0 (5.28)

The same relations describe the ladder operators of a set of independent har-
monic oscillators, revealing a deep connection between these two systems.
The combination N, = ala, is called the number operator for state a for
obvious reasons

Ny |No,N1,...Na,...) = Na [No, N1, ... Ny, ...). (5.29)
From Eq. 5.28 it follows that
[aa, Na} =a,
[a:u Nzx} = *al‘ (5:30)

You can think of the first of these as ‘count then destroy minus destroy then
count’, for example.



S

It follows that a normalized state “I’,,q,,czn_ ,XN> of the many boson system

may be written as

+\No ( +\Mi
|No, N1, . >:(’10) (a1) ---]0,0,...)
VNo! VN

The state with no particles |0,0,...) is known as the vacuum state. We will
often denote it by [VAC) for brevity. In terms of a wavefunction, you can

(5-31)

think of it as equal to 1, so that Eq. 5.23 works out. Alternatively, you can
take the relations in Eq. 5.28 as fundamental, in which case [VAC) has the
defining property

a, [VAC) =0, forallw

Now we move on the slightly trickier matter of fermions. Eq. 5.23 suggests
that the creation operator should be defined by

Cy “i’fwzmw> — VN +1A |@4) “I’fwz..,aN> , for fermions. (5.32)

For the fermion annihilation operators a, = c} the result corresponding to

{a,x,a;r;} = bup

{awas} = {al.af} =0 (533)
where {A, B} = AB + BA denotes the anticommutator.

Eq. 5.28 is

Problem 5.8

Prove this.

Of course, you could calculate the commutator, but it proves to be compli-
cated (and uninteresting). The number operators, together with Eq. 5.30
(with commutators!), work as in the boson case. Eq. 5.33 implies that
(al)z = 0, so we can’t add two particles to the same single particle state,
consistent with the Pauli principle. Similarly, since N, = 0 or 1, (aa)z =0,
meaning that we can’t remove two particles from the same state.

The state ¥4

t1a--yy Das the representation

2= ()" ()" 00, 539

which is the same as Eq. 5.31, since Ny = 0 or 1 only are allowed.

|N0/ Nl/ ..

Suppose we want to move to a different basis of single particle states
{|@«)}, corresponding to a unitary transformation

|Pa) = §<§9ﬁ | §a) | 9p) - (5-35)

From Eq.s 5.25 and 5.32, the one particle states with the wavefunctions
{@a(r)} are just {af [VAC)}. So we see that the above basis transformation
gives a new set of creation operators

il = Z <q0¢; ] Pa) a:g. (5-36)
B

Often we will work in the basis of position eigenstates {|r)}. In this case the
matrix elements of the unitary transformation are <(p/5 | r) = gog(r), just the
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|[VAC) is not to be confused with |0),
which will denote the ground state of
our many body system with a fixed
number of particles.

Note that this equation defines the
overall sign of the state [Ny, Ny, . ..).
Two states ‘I’;?l,,‘,z_,,uN and ‘I’;‘;aé_w}v
with the same occupation numbers,
that is, with {a],} a permutation of
{a}, may differ by a sign depending
upon the signature of the permutation.
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A compact way of writing creation
and annihilation operators without
choosing a basis at the outset is to
associate an I and a‘b with any

single particle state |a) and declare the
(anti-)commutation relations

a1 lg) F g = (alB).

For an orthonormal basis the RHS is
Oup-

complex conjugate of the wavefunction. Denoting the corresponding creation
operator (sometimes called field operator) as ' (r), Eq. 5.36 becomes

=) ¢h(r)a. (537)
B

Now we can see why we chose to work with the annihilation operator rather
than the creation operator. The conjugate of Eq. 5.37 is

(r) = ;?ﬁ(r)aﬁ/ (5:38)

and involves the wavefunctions @g(r), rather than their conjugates. The re-
lations satisfied by these operators are easily found from the corresponding
relations in Eq. (5.28) and Eq. (5.33), together with the completeness relation

Z P (r =6(xr—71). (5:39)
We find

PO ) Fy'()p(r) =6(x—7)
PO (I) T ) () =9 (') F'(K)ypT(r) =0 (5-40)

with the upper sign for bosons, and the lower for fermions. Just as the po-
sition representation is very one convenient one for quantum states, the
position basis creation and annihilation operators provide a convenient basis
for many of the many body operators we will encounter.

As an example, let our original basis be the eigenbasis of the free particle

2
Hamiltonian H = 5 with periodic boundary conditions

- "
k) = exp(z\/gr), k=21 (zx, L—y, IZZ) ,  Nyy.z integer, (5.41)
x Ly Lz

with V' = LyLyL;. The matrix elements of the transformation between this

original basis and the position basis {|r)} are (k |r) = exp(—ik-r)/+/V, so
we have

¥l ( szexp —ik - r)af, (5-42)

and similarly

3\

Z (ik - 1)a (5-43)
k

TAKING A breath at this point, we can see that the cumbersome basis set
{J‘I’S/ A >} has been hidden away behind a much more compact algebra

alag---an

of operators that generates it. Once we figure out how to write physical
observables in terms of these operators, we can — if we wish — purge our

formalism completely of wavefunctions with N arguments!
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Problem 5.9

(Bogoliubov transformation) Consider the Hamiltonian
H=¢ (a*a + b+b> +A (aerJr + ba)

This Hamiltonian is slightly unusual, as it doesn’t conserve the number
of particles.

1. Let’s first consider the case of bosons. Then all operators commute

except
[a,a’] = [b,bT] = 1.

Define new operators

a = acoshx — b sinhx

= bcoshx — a't sinhx
p

for some « to be determined. Show that «, at, and g, g satisfy the
same commutation relations.

2. Show that x can be chosen so that, when written in terms of & and
B, there are no ‘anomalous’ terms in H (i.e. no terms af or a’g"). In
this way find the eigenvalues of the Hamiltonian.

3. Now repeat the problem for fermions. The first thing you will need
to figure out is what kind of transformation preserves the anticom-
mutation relations.

4. It’s natural to expect that, since the algebraic relations are preserved
by this transformation, it may be written as a unitary transformation
on the operators

a = Uall®
p=ubut, uUt=u-!

Show that U = exp [x (a'b" — ba)] does the job for both fermions
and bosons.

5.4 Representation of operators

We now turn to the matter of representing operators of the many particle
system in terms of creation and annihilation operators.

One particle operators

A one particle operator consists of a sum of terms, one for each particle,

with each term acting solely on that particle’s coordinate®. In the termi- ¢ More formally, each term acts on one
factor in the product H; ® - - - H; of

nology that we introduced in Section , a one-particle operator is a sum of ° ) :
single particle Hilbert spaces.

single particle operators, one for each particle. By assumption each term
is the same, consistent with the indistinguishability of the particles. We’ve
already met one important example, namely the Hamiltonian for identical
noninteracting particles in Eq. 5.8. In general, the action of an operator A
on the single particle states may written in terms of the matrix elements
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(9a| Al @p)
Alpg) =Y loa) (o | Al 9p) - (5.44)

In words, the action of A is to take the particle from state }q)/g> to a su-
perposition of states with amplitudes given by the matrix elements

A = (@a | A| @p). Now it’s not hard to see that this action can be repli-
cated on the one particle states a! [VAC) with

A=Y Agaiag (5.45)
wp

(for the moment we’ll use hats for the second quantized operator, but later
we’'ll drop this distinction). To see this, first note that Eq. (5.30) can be gener-
alized to

{aa,a;gav] = Oaply
[al,a;ga,y} = —Jmag. (5.46)
Using the second of these relations, together with the fact that A [VAC) =0
Aot _ (4 .t t A
Aa}|VAC) = ([4,ap] +af A) [vAC)
=Y Aupal [VAC), (5.47)
o

which is precisely Eq. (5.44).

Problem 5.10

Show that on 2 particle states A acts in the following way

ALY = N & (Aar N [¥551)
v

(5.48)
)
where
I CR Y
N = )
wp { N (5-49)

Notice that A looks formally like the expectation value of A in a single par-
ticle state Y, a, |@s). The difference, of course, is that the a, in A are opera-
tors, so that the order is important, while those in the preceding expression
are amplitudes. The replacement of amplitudes, or wavefunctions, by oper-
ators is the origin of the rather clumsy name ‘second quantization’, which is
traditionally introduced with the caveat that what we are doing is not in any
way ‘more quantum’ than before.

To repeat the above prescription for emphasis: A one particle operator A has
a second quantized representation formally identical to the expectation value of its
single particle counterpart A.

This probably all looks a bit abstract, so let’s turn to a one particle oper-
ator that we have already met, namely the noninteracting Hamiltonian in
Eq. (5.8). According to the above prescription, this should have the second
quantized form

H=) (¢u|H| pp) arag, (5.50)
up



where H is the single particle Hamiltonian H = —%V? + V(rj). This
takes on a very simple form if the basis {|¢@,)} is just the eigenbasis of this
Hamiltonian, in which case (@, | H | ¢p) = Eadyp and

H=)Y Euaala, =Y EN,. (5-51)
14 14

Evidently this is correct: the eigenstates of this operator are just the N parti-
WS /A

aloy-o

cle basis states ‘
Alternatively, we can look at things in the position basis. By recalling how

N >, and eigenvalues coincide with Eq. (5.12).
the expectation value of the Hamiltonian looks in this basis, we come up
with

2
A= / dr [—thlf(l‘)vzlp(r) + V(r)lp*(r)lP(r)]

2
= / dr Hmw*(r) - Vip(r) + V(r)lﬂ(r)lﬁ(r)] : (5.52)

where in the second line we have integrated by parts, assuming that bound-
ary terms at infinity vanish. The equality of (5.52) and (5.51) may be seen by
using Eq. (5.38).

The Heisenberg equation of motion corresponding to Eq. (5.52) is

ihdyp(r,t) = — [H,w(r,t)}
12 (5.53)
= VY5, t) + V(D)p(n 1),

T 2m

which is the time-dependent Schrodinger equation but for the field operator!

As a second example, consider the particle density. This is not something
that one encounters very often in few particle quantum mechanics, but is
obviously an observable of interest in an extended system of many particles.
The single particle operator for the density at x is

p(x) =d(x—r). (5.54)

This may look like a rather strange definition, but its expectation value on a
single particle state ¢(r) is just p(x) = |@(x)|?, which is just the probability
to find the particle at x. Following our prescription, the second quantized

form of the operator is then

p(x) = 9T (x)y (). (5.55)

As a check, integrating over position should give the total number of parti-
cles

N =[xy (0p(x) = Lala, = TN, (556)

as it does! Another useful thing to know is the expectation value of the
density on a basis state |[Np, N .. .)

(No,Ni...|p(r) | No,Ni...) = Y Ny |ga(r)? (5-57)

which is most easily proved by substituting the representation (5.38). This
seems like a very reasonable generalization of the single particle result: the
density is given by sum of the probability densities in each of the constituent
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single particle state, weighted by the occupancy of the state. Note that the
symmetry of the states played no role here.

As a final example of a one particle operator, the particle current has the
second quantized form

i) =i [p'0 (Vo) - (V') p@]. 69

Often we consider the Fourier components of the density or current
A A —1q- +
Pq = /dfP(f)e = ;“qu/zamq/z
2 — | gl —iqr _ k +
jq = [ drj(r)e =) o k—q/2%+q/2: (5-59)
k

The q = 0 modes are just the total particle number and % times the total
momentum, respectively.

Problem 5.11

The operator for the density of spin of a system of spin-1/2 fermions is
1
5(r) = 5 L9l (0 (o),
s,8!

where ¢ = (0y, 0y, 0y) are the Pauli matrices and 9 (r), 1 (r) satisfy

{9, (1), 93 ()} = 098(r — 1.

1. Find the commutation relations [S;(r), S;(r’)].

2. For the Hamiltonian
o Z/d%vlp;vlps
2m 5
find the form of the Heisenberg equation of motion
9;S(r,t) = i[H,S(r,t)] /.

Interpret your result.

Single particle density matrix

We can also define a quantity, whose usefulness will become apparent as we
go on, called the single particle density matrix

gY) = (¥ 0y (r)) (5.60)

Notice that g(r,r) = (4(r)). It may not be immediately obvious what this has
to do with the density matrices of Chapter 4. However, in terms of the many
body wavefunction ¥ (ry, 1y, ..., ry) we have

g(r, ) = N/dr2 cedey (1, o) Y (Y, 1, 1), (5.61)

In other words, g(r, Y ) arises from the N particle pure state density matrix
pon = |¥) (¥| by “tracing out’ N — 1 particle coordinates.
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A slight generalization of the above calculation for the density gives for
the state |[Np, N7 .. .)

g(rr') =Y Nagy(r)p,(r). (5.62)

Let’s evaluate this for the ground state of noninteracting Fermi gas. Recall
that in this case Ny = 1 for |k| < kr, and 0 otherwise. Thus we have

A l ik-(r' —1) _/ dk ik-(r'—r)
glor) = 4 |k|Z<:kFe i<k (27)3 ‘

Kk} [sin(kp|t’ —1])  cos (kp|t —1|)
=2 e e | 69 w0/

3
Note that g(r,r) = 6’% = n, as it should (see AQP for the relation between

33

0 S—— 10

density and Fermi wavevector). Also, ¢(r,r') — 0 as [r — /| — oo. ot
F

Correlation f unctions Figure 5.3: Single particle density

. . . . . matrix for the Fermi gas.
The function g(r,1’) appears as an ingredient in many calculations. As an &

example, let’s consider the density-density correlation function. This is
defined as We are now going to drop the hats

Cp (r, 1‘/) = <: p(l‘) p(r') :> ) (5.64) for second quantized operators: the

distinction is no longer important.
Sandwiching operators between colons denotes the operation of normal
ordering, meaning that we write the constituent creation and annihilation
operators so that all annihilation operators stand to the right of all creation
operators. In the case of fermions we include the signature of the permu-
tation (the sign that tells us whether the permutation corresponding to our
rearrangement is even or odd). Thus

aaazg =0up £ agaa, while : aaazg = ﬂ:agaw

with the upper sign for bosons, and the lower for fermions.
In the present case you can easily convince yourself that

(p(r)p(r')) = (:p(r)p(r') ) + 6(r = 1') (p(x)) . (5.65)

Before ploughing on, let’s first motivate the above definition. Imagine divid-
ing space into a fine lattice of cubic sites, such that the probability of finding
two particles inside one cube can be neglected. This means that the cube
should have linear dimension much smaller than the interparticle spacing.
We denote by N; the number of particles in cube 7, centered at r;. Of course

N; = drp(r). (5.66)
Jcube i

Since N; is only o or 1 by assumption, the probability of cube i being occu-
pied is

P(cube i occupied) = (N;),
that is, the mean occupancy. Likewise the probability of having cubes i and j
occupied is

P(i and j occupied) = (N;Nj) = /cubeidr/cubejdr, (p(x) p(x')).
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7 You might notice that this expression
does not handle the case & = g = v =
0 correctly in the case of bosons. In the
limit of a large system this does not
matter (consider the case of properly
normalized plane waves if you are not
sure).

This tells us that (p(r) p(r’)) is equal to the joint probability density of find-
ing a pair of particles at r and r/, but this interpretation only works for
r # 1, since fori = j

(NiN;) = (NZ) = (Ny),
which shows that (p(r) p(r’)) always has an additional contribution §(r —
') {p(r)), determined by the mean density. Eq. (5.65) shows that normal
ordering automatically removes this piece. Why? Imagine removing particles
at r and r’ by applying the product of annihilation operator ¥ (r)y(r’) to the
original state, call it |'¥). This has the effect of projecting onto that part of
the wavefunction where two particles are localized at these positions. The
probability (density) of finding two particles at these locations is then the
squared modulus of the resulting state, that is

lp@ ) %) 1P = (¢ ()" @), (5.67)

which is just the normal ordered form (: p(r) p(r) :)!

WiTH THE physical meaning of C,(r,1’) established, let’s proceed to the
calculation. As in the derivation of Eq. (5.57), we substitute the representa-
tion (5.38) to give

(p@ () = ¥ 0i(0)es(r)p5(r)gs(x) (afagatas).  (568)
w,B,7,0

If we are considering the expectation in a state of the form |Np, Ny, ...), we
can see that an annihilation operator for a given single particle state must be
accompanied by a creation operator for the same state. There are therefore
two possibilities

a=pB,v=96 or

v=0p=",

which give rise to two groups of terms. The first contains the average

<a+aaa7a7> = NyN,, while the second involves

<aluﬂra;a > = Nu(1£ N, ).

Here we have used
a’La =N,
77_1:|:aa =1=£N,. (5.69)

Overall we have”

Z% uz ( )907( /)NIXN'Y

+Z§0a ( )(Puc( ,>Nvé(1:tN7)' (5-70)

This illustrates a general result — known as Wick’s theorem — that expecta-

tion values in a state [Ny, Ny, ...) can be computed by pairing the indices of

creation and annihilation operators in all possible ways and using Eq. (5.69).
Using the completeness relation Eq. (5.39) the above result can be written

(e p(x')) =s(x—1) (p(x)) + (p(x)) (p()) £ g(r,X)g(x',x).  (571)



or
Cole,¥) = (p(x)) (p(¥)) £ g(r,¥)g(x, ). (5.72)

For the fermion case, we see that the correlation function vanishes as the
separation |r — r'| — 0, because ¢(r,r) = (po(r)) (Figure 5.4). This is, of
course, another manifestation of the exclusion principle: it is not possible for
two fermions to sit on top of each other. The scale of the ‘hole’ in the cor-
relation function (anti-bunching) is of course set by the mean interparticle
separation, which is to say the Fermi wavelength.

For bosons the situation is very different. If g(r,t') — O as [r — /| — oo,
the value of the correlation function as |r — r'| — 0 is twice the value at
|r — t'| — oo. This characteristic behavior is often termed bunching: a pair
of bosons is more likely to be found at two nearby points than at two distant
points.

Problem 5.12

Re-derive Eq. (5.71) by starting from the many-body wavefunction

of the ground state (that is the totally symmetric or antisymmetric
function ‘1’21/ vé“'aw (r1,12,...1N)). Remember that in the first quantized
representation, the density operator is p(x) = YN 6(x — 1;).

Two particle operators and interactions

A two particle operator consists of a sum of terms acting pairwise on the
particles. The most important example of such an operator is that describing
the potential energy of interaction between pairs of particles

N
Hine = ) U(1; —17). (5.73)
i<j
Here U(r — r') is the potential energy of a pair of particles at positions r and
Y, and the sum ensures that we count each pair of particles once. Recalling
the form of the density operator in the first quantized representation: p(x) =
YN 6(x —17), we see that

Hint 2 %/drdr’p(r)tl(r —1)p(r) (5.74)

almost replicates Eq. (5.73). This expression is familiar from electrostatics,
where it represents the electric potential energy of a continuous charge dis-
tribution, with U(r — r’) the Coulomb potential. The factor of % ensures that
we only sum over each pair once. The problem with Eq. (5.74), however, is
that it includes the terms with i = j that are excluded from Eq. (5.73), that
is, it allows a particle to interact with itself! From Problem 5.12 you will
recall that it is precisely these terms that are responsible for generating the /-
function contribution to Eq. (5.71). Here, as before, the remedy is to normal
order the operators

Hine = /drdr to(nU(r—1)p(r') == %/ drdr’ " (r) " (YU (=) (¢ )y (v).
(5.75)

After doing so, it is clear that at least two particles, rather than one, are re-
quired for the interaction energy to be non-vanishing. The removal of these

THEORETICAL PHYSICS II 85

C'%,(I‘,O)/n2

o 5

kplr|
Figure 5.4: Density correlation function
for the Fermi gas.

Note when we have a Bose condensate
g(r,¥') tends to a finite value as |r —
Y| — oco.
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8 The formalism was subsequently
extended to fermions by Jordan and
Wigner (Jordan and Wigner, 1928).

‘self-interaction” terms was of particular importance historically. The diver-
gent ‘self-energy’ of the electron, due to the singular nature of the Coulomb
interaction, was an entrenched difficulty of the classical theory. Jordan and
Klein (Jordan and Klein, 1927), who pioneered the modern form of second

quantization for bosons®

, saw the existence of the above simple prescrip-
tion in quantum mechanics as a particular benefit. We have taken the more
usual modern approach (in nonrelativistic physics) of assuming interactions
between pairs only at the outset.

Using Eq. (5.72) we can immediately write down the expectation value of

Hint in a state [No, Ng,...)

(Hint) = 5 [ drdd (o(e))U(e—){o(x) = 5 [ drdd Ulx—¢)g(r, 0 )g(x' )
(5.76)
The two terms are known as the Hartree and Fock (or exchange) contribu-
tions, respectively. This expression lies at the core of the variational Hartree—
Fock method for many body systems, which approximates the ground state
by a product state.

WE PAUSE to present the final form of the second quantized Hamiltonian,
including an external potential and pairwise interactions

h2
H= [ ar [%vwr) V() + VP )P (0)
b5 [drad PO UG- e, 67

Understanding the properties of this Hamiltonian, and its extensions that
include different spin states and particle species, is the central problem of
many body physics.

5.5 Interference of Bose—Einstein condensates

Consider a gas of N noninteracting bosons occupying the lowest energy level
of some potential well: a Bose condensate. If the ground state wavefunction
is @o(r), the N-body wavefunction for such a state is

N
Y(r,1,...,1N) = H@O(ri)/ (5.78)

which we can write in second quantized notation as

1
vV N!
+

where a, creates a particle in the state @y(r). Imagine that we took another

) = (af) " [VAC), (579)

well, also filled with N bosons, and placed it alongside the first. If we switch
off the potentials at some instant, the particles will fly out, with wavefunc-
tions orginating in the two wells overlapping. Precisely this experiment was
reported in (Andrews et al., 1997). What do we expect to see?

Let us denote by ¢ (r) and ¢g(r) the ground states of two spatially sepa-
rated potential wells. First, consider a state where each boson is in a super-
position of ¢ (r) and @g(r). Such a situation could arise by starting from a
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single well and adiabatically splitting in two. We can write such a state as

J N 1 Ny _; Nk
s = g |V e e

where Np g are the expectation values of particle number in each state N =

N
[VAC), (5.80)

Np + Ng. We allow the system to evolve for some time ¢, so that the two
‘clouds’ begin to overlap (typically achieved by allowing free expansion
i.e. turning off the confining potentials). Ignoring interactions between the
particles, the many-particle state is just Eq. (5.80) with the wavefunctions
¢1,r evolving freely. We compute the subsequent expectation value of the
density using the second quantized representation

p(r) =" (Myp(x), () = pr()a, + pr(r)ag + - -

where the dots denote the other states in some complete orthogonal set that
includes ¢ (r) and @g(r): we can ignore them because they are empty. A
simple calculation gives

=Pint(r,t)
(p(x,1))g = Nilgr(x, )2 + Nr|pr(r, 1)[* +2¢/ N  NpRe e gf (r, ) pr (1, 1)
(5.81)
If the clouds begin to overlap, the last term in Eq. (5.81) comes into play.

Its origin is in quantum interference between the two coherent subsystems,
showing that the relative phase has a real physical effect.

As an illustration, consider the evolution of two Gaussian wavepackets
with width Rg at ¢ = 0, separated by a distance d > Ry

 (r£d/2)* (1+int/mR3))
2R? ’

(5.82)

eLRr(L, 1) ot exp
L,R 7 = 3/4
(7R})

with )

R} =Rj+ (7;11:0) :
Eq. (5.82) illustrates a very important point about the expansion of a gas.
After a long period of expansion, the final density distribution is a reflection
of the initial momentum distribution. This is simply because faster moving
atoms fly further, so after time t an atom with velocity v will be at position
r = vt from the center of the trap, provided that this distance is large com-
pared to Ry, the initial radius of the gas. The t — oo limit of Eq. (5.82) gives

mRo [r+d/2] > 2] (5.83)

|pr r (1, t — 00)|?  exp [— ( ”
reflecting a Gaussian initial momentum distribution of width 7/ Ry. Imaging
the density distribution after expansion is one of the most commonly used
experimental techniques in ultracold physics, and yields information about
the momentum distribution n(p) = a;r,ap before expansion.
The final term of Eq. (5.81) is then

hr-d
Pint(r/ t) = A(r, t) cos [0+ ﬂ’lR%R%t]
2v/N. N ? +d?/4
Alrt) = =3pgs P (‘Rz) (584
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The F is for Fock, as product states are
sometimes known as Fock states.

Figure 5.5: Interference fringes ob-
served between two Bose condensates
(Andrews et al., 1997).

9 This article opens by recalling Dirac’s
comment that appears at the start

of this chapter. Since Dirac invented
second quantization (though the term
itself is Jordan's) to describe many
photon states we give him a pass.

The interference term therefore consists of regularly spaced fringes, with a
separation at long times of 27thit/md.

Now wEe imagine doing the same thing with two condensates of fixed par-
ticle number, which bear no phase relation to one another. The system is
described by the product state

1
W(“DM (ak)N® [VAC)..

Computing the density in the same way yields

(p(r, 1)) = Ni|@L(x,t)|* + Nr|gr(r,)[%, (5.85)

which differs from the previous result by the absence of the interference

INL, NR)F =

term.

This is not the end of the story, however. When we look at an absorp-
tion image of the gas, we are not looking at an expectation value of p(r) but
rather the measured value of some observable(s) p(r). The expectation value
just tells us the result we would expect to get if we repeated the same ex-
periment many times and averaged the result. We get more information by
thinking about the correlation function of the density at two different points.

Problem 5.13
Show that

(pm)p(') )p = (p())p (p(F'))p + NLNR@] (1) 9 () 9L (') R (1)
+ NLNr @R (1) 7 (') or (¥ ) @r(r).
(5.86)

We see that the second line contains interference fringes, with the same
spacing as before. The correlation function gives the relative probability of
finding an atom at t’ if there is one at r. We conclude that in each measure-
ment of the density, fringes are present but with a phase that varies between
measurements, even if the samples are identically prepared.

The rather surprising implication is that predictions for measured quanti-
ties for a system in a Fock state are the same as in a relative phase state, but
with a subsequent averaging over the phase.

Problem 5.14
Prove this by showing that the density matrix
70 KL NR) (N, N
P—/O E' L, Nr)g (Nr, NLlg
coincides with that of a mixture of Fock states with binomial distribu-

tion of atoms into states ¢, ¢,. At large N this distribution becomes
sharply peaked at occupations Ny, Ng.

The interference of two independent condensates was observed in 1997
in (Andrews et al., 1997). The related question of whether two independent
light sources give rise to interference was discussed much earlier in (Magyar
and Mandel, 1963)°.



5.6 The Hanbury Brown and Twiss effect

As another example, let’s consider the problem of noise correlations in
time-of-flight images of an expanded gas. As we saw above, the density
distribution after expansion reflects the initial momentum distribution. This
observation applies not just to the average of the momentum distribution
n(p) = a;;ap, but also to its correlation functions. Thus even images from
a single experiment that seem to show only small fluctuations in density
superimposed on a smooth background can reveal information when the
correlation function is computed.

In (Folling et al., 2005), atoms were initially prepared in an optical lattice
in a Mott state, meaning that each site in the lattice had a fixed number of
atoms. The wavefunction of such a state may then be written

[af IVAC), (587)

:f creates a particle localized at site r; in the lattice, with (let’s say)

Gaussian wavefunction

where a

Column Density (a.u.)
Corr. Amp. (x104) ™
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Problem 5.15

Show that the correlation function of momentum state occupancies is
(sn(p)n(p) :) = }_ ¢ () §:(p) 7} (P)9;(p") = ¢/ (P)§; ()7} (') :(p").
L]

(5.88)
where @;(p) is the Fourier transform of the spatial wavefunction. Evalu-

ate the Fourier transform and explain the structure of the noise correla-
tions in Fig. 5.6.
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This experiment is a realization of the
Hanbury Brown and Twiss effect,
which is the work of two people (not
three): Robert Hanbury Brown and
Richard Q. Twiss. For the history and
early applications of this effect, see
(Baym, 1998; Kleppner, 2008).

Figure 5.6: (a) raw image (b) density of
an atomic cloud following expansion
from a Mott state. (c) and (d) noise
correlation signal extracted from the
same image. From (Folling et al., 2005).






6
Introduction to Lie groups

Good heavens! For more than forty years I have been speaking prose without
knowing it.
M. Jourdain, Le Bourgeois Gentilhomme

Often without acknowledging it explicitly, we use symmetry repeatedly
in our analysis of physical problems. At a very basic level, we assume that
the laws of physics are the same at all locations in space and all moments in
time. In other words, that physics is invariant under translations in space
and time.

Other problems are simplified by the use of rotational symmetry. For
instance, the partial wave expansion of Chapter 3 was only really useful
when there was no scattering between the different partial waves, on account
of the assumed spherical symmetry of the potential.

As a final example, it’s sometimes useful to analyse motion in a reference
frame moving relative to our own, exploiting the principle of relativity,
which comes in Galilean, special and general flavours.

What these three examples have in common is that they are each char-
acterized by a continuum of possible symmetry transformations. That is,
we can translate arbitrary distances, rotate through arbitrary angles about
arbitrary axes, and pass to a frame moving with arbitrary velocity (up to
the speed of light, in the case of Einstein’s theory). This situation should be
contrasted with discrete symmetry, where there are only a finite number, or
a discrete infinity of such operations. Parity symmetry (just one non-trivial
symmetry operation) is an example of the former, whereas the discrete trans-
lational invariance of a periodic structure such as a crystal illustrates the
latter case.

It would be quite reasonable if the above list of continuous symmetries —
which are more or less obvious in the world around us' — was exhaustive.
Symmetry would still be very useful concept, and well worth studying.
Remarkably, however, there are new symmetries in the subatomic world
that don’t have any analog beyond the scale of the nucleus. Perhaps most
importantly, Quantum Chromodynamics, the theory of quarks and gluons,
involves a symmetry between the three colours of quark called SU(3).

The mathematical structure corresponding to continuous symmetries, of
which SU(3) is an example, is called a Lie group, and is the subject of this
chapter.

* This isn’t really true for the principle
of relativity: it took Galileo to make
the point that an experiment below
deck on a steadily moving ship could
not detect its motion.
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In discussing symmetry in physics,
one can always take an active or a
passive view. In the active view, the
system is really altered by the symme-
try transformation (e.g. rotated). In the
passive view, the system is unchanged,
but we imagine changing the way our
measurements are made (rotating our
coordinate axes, for example). In both
cases, we have a symmetry if the rela-
tions between the new measurements
are the same as the relations between
the old measurements.

6.1 Symmetries in quantum physics

Symmetries are groups

The result of performing one symmetry transformation and then another is
itself a symmetry transformation. This basic feature tells us that symmetry
transformations form a group.

In 1B Maths, you've already met the definition of a group, which is a set
of elements {g7, g2, ...} and an operation called the group law, which takes
two elements and gives us a third. We’ll normally refer to this operation as
a product and write it accordingly i.e. g1, bearing in mind that in general
182 # $281- When g192 = g241 for all pairs of elements the group is called
abelian. In the case of symmetry transformations, the group law is obvious:
perform one symmetry transformation and then the next.

By definition, the group product satisfies the conditions of

e Associativity ¢1($293) = (8142)g3. Probably the only operation you will
have met so far where this property fails is the vector product (a x b) x
c#ax(bxc).

¢ Identity A group must contain the ‘do nothing’ element, often denoted ¢,
such that eg = ge = ¢ for all g in the group.

* Inverse For every g in the group, there’s an element, denoted ¢!, such

thatgg ' =g lg=e.

This definition includes a great many things with which you are familiar.
For example, the integers form a group with the group law corresponding
to addition. In fact, it is so general that it’s actually quite hard to think of
mathematical objects that physicists make regular use of that are not groups.
For this reason, mathematicians narrow things down by specifying further
properties. One of the great triumphs of 20" Century mathematics was the
classification of finite simple groups, which roughly corresponds to those
finite groups that can’t be broken down into simpler constituents.

Symmetries and unitary transformations

In quantum physics a symmetry transformation leads to a transformation
of every quantum state |¥) to a unique state [¥’). To qualify as a symmetry,
the transformation must preserve probabilities

(@' [¥)* = [(@¥)?, 6.1)

for all pairs [¥) and |®). What kind of transformation has this property?
Unitary transformations certainly fit the bill. These are linear transforma-
tions with the property

utu = 1. (6.2)

All of the symmetries that we will study are described by unitary transfor-
mations.

TANGENT 1If the transformation is linear, then to satisfy Eq. (6.1) it must be uni-
tary. But who said it had to be linear? An important theorem proved by Eugene
Wigner, one of the pioneers of the application of the group theory to quantum

physics, states that if Eq. (6.1) is satisfied the transformation must have the form

[¥') = exp (i0(¥)) U[¥). (63)
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Here U is either unitary or antiunitary, a property we’ll define in a moment, and
8(¥) is a phase function that depends on the state [¥). We won't discuss the proof
of this theorem: see (Simon et al., 2008).

The single most important example of an antiunitary operation is provided by
complex conjugation K : ¥(r) — ¥*(r). This operation is antilinear
K(a¥(r) + pO(r)) = a*¥*(r) + D" (r) = a"K¥(r) + B*KD(1) (6.4)
The Hermitian conjugate of Kt = K, and we have
K'K=1. (6.5)
This is the same condition that defines a unitary linear operator unitary, but since
K is antilinear, we call it antiunitary.

Antilinear operators are unpleasant to work with in the ‘bra-ket’ notation. Con-
sider the obvious identity

/ dr (K (1)) K¥(r) = / dr'¥* (r)®(r). (6.6)
It’s tempting to write this in Dirac notation as
(@|K'K|Y) = ((P[¥))", (6.7)

but of course, this is inconsistent with Eq. (6.5). The problem is that we are used
to gamely allowing operators to act to the left or to the right. However, the right
hand side of Eq. (6.7) is antilinear in [¥) while the left hand side is linear, if Ktis
taken to act to the right. It’s best to always let operators act on kets, and then take
the corresponding bra.

It would be nice to not have to bother with antiunitary operations at all, but unfor-
tunately there is one important example: time reversal symmetry. A less snappy,
but more accurate name is symmetry under reversal of motion, which was the term
introduced by Wigner in 1932. This symmetry is fairly evident in Newton’s law

i=—VV(r), (6.8)

where r(—t) is a solution if r(¢) is, on account of the double time derivative (that’s
why single time derivatives, describing friction or magnetic forces, break time
reversal symmetry). In the Schrédinger equation

2

oY (x,t) = {—ZHVZ—&-V(r) ¥(r,t). (6.9)

The corresponding transformation is ¥(r,t) — ¥*(r, —t), i.e. just the operation K
we introduced above.

Time reversal symmetry is particular interesting for systems with half integer spin
(such as an odd number of electrons), where it gives rise to a two fold degeneracy
called Kramers degeneracy.

6.2 Rotations as a Lie group

We are going to take whirlwind tour of some of the properties of Lie groups,
taking the rotations in three dimensions as our principal example. The net
effect will be a lot of new names for things you are already familiar with, but
the idea is to develop an appreciation that the ideas have a greater general-
ity.

What is a rotation? It is a transformation that does not distort shape i.e.
a rigid motion, which also has a point fixed (so that translations are not al-
lowed). It’s not hard to see that a rotation is therefore a linear transformation

x — Rx, (6.10)
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It is important that we have restricted
ourselves to SO(3), the group of
proper rotations. The improper rota-
tions cannot be written in this way, as
they are not connected to the identity.
We say that O(3) has two connected
components, and SO(3) is the identity
component of O(3).

subject to
RTR = 1. (6.11)

That is, rotations are described by orthogonal matrices. The orthogonality
condition is really 6 conditions (RTR is symmetric), and so reduces the num-
ber of free parameters in a 3 x 3 matrix from g to 3. This is consistent with
common sense: specifying a rotation involves a choice of axis (2 parameters)
and rotation angle.

The product of two orthogonal matrices is an orthogonal matrix: they
form a group. This group is denoted O(3): the group of 3 x 3 orthogo-
nal matrices. Matrices satsifying Eq. (6.11) have (det R)?> = 1, so this in-
cludes matrices satisfying detR = —1, which are called improper rota-
tions. They are a combination of a rotation and a parity transformation
(x,y,2) = (—x,—y, —z). We now restrict ourselves to proper rotations with
detR = 1, these form a subgroup of O(3) called SO(3), where the S is for
special, a not-very-descriptive name designating unit determinant.

The order in which rotations are performed is important, as you can ver-
ify by subjecting this handout to quarter turns about various axes. Thus the
rotation group is nonabelian.

Lie algebras

You are familiar with the angular velocity vector, in terms of which the ve-
locity of a particle may be written

F=wXr. (6.12)

This may be written as a matrix equation

= Qr, (6.13)
where
0 —wz; Wy
Q= Wy 0 —Wyx or ij = —wieijk. (6.14)
—wy Wy 0

Note that 2 parametrizes the most general real antisymmetric matrix. If
we regard Eq. (6.12) as a differential equation, the solution is (assuming 2
constant)

r(t) = exp () r(0). (6.15)

Problem 6.1

Verify that exp (2f) is a rotation matrix i.e. it is orthogonal.

Introducing the matrices

00 O 0 01 0 -1 0
Ai=|(0 0 -1], Ay=|10 0 0], Az=11 0 O
01 0 -1 0 0 0 0 O
(6.1
we can write 2 = w - A. The rotation matrices can then be written
R=exp(6-A) (6.17)

where 0 = wt is a vector whose direction gives the axis of rotation, and
whose magnitude is the rotation angle.
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Problem 6.2

Show that if 6 = 6

Rr =rcos6 +fi x rsinf + A(A-r)(1 — cosb). (6.18)

The representation of Lie group elements by exponentials is very natural
for the following reason. An element X of a general (matrix) Lie group that
is close to the identity has the form

X=1+ex+---

for e some small quantity. This seems restricted to group elements within an
€ of the identity, but now we can exploit the group property by raising these
elements to a high power. By the definition, the result is still in the group.
Furthermore,

lim (]l + %)N = exp(x) (6.19)

N—co
Thus, exponentiation of the matrices x describing infinitesimal transforma-
tions gives us finife transformations.
The defining features of the Lie group imply some conditions on x. For
instance, in the case of rotations we have

R=1+er,
and
RIR=(1+el 4+ YA +er+-)=T4e(r+r)+---=1
Thus r = —r!. You have already verified that the finite transformations

R = exp(r) satisfies the group property.

The matrices x form a vector space called a Lie algebra. In order to gener-
ate group elements upon exponentiation, they must “inherit” some defining
conditions from the Lie group. These conditions are always expressed as
linear equations — antisymmetry in the case of the rotations. By choosing
a complete basis of matrices satisfying these conditions a general element
can be written as a linear superposition, as we did when we wroter = 0 - A
above.

The A; matrices are known as the generators of the rotations. They do not
commute with each other

(AL Aj] = i, (6.20)

which gives rise to the nonabelian nature of the rotations, because
R(61)R(62) # R(61 + 62). (6.21)

A natural question is therefore: what 8 does result from this composition
of rotations? We can get some idea of what is going on by expanding the
exponentials. Retaining only terms to second order gives

1 1
{1+91-A+2(61-A)2+---] [1+62~A+2(62~A)2+-~~ =
1 1
1+(91+62)~A+§((61+62)-A)2+§[61~A,92-A}...: (6.22)
1 1
1+<91+92+291><92> ~A+§((61+62)~A)2+---

95
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For harmonic oscillator variables a
and at Problem 6.3 gives

za—z*at 2 a—2*at

¢ ¢ _ e[z+z’]a7[z*+z’*]a+

e~ Im|zz* —2z*7'] )
Note that the same group law arises
from multiplication of the matrices

1 z Lz +it
0 1 z*
0 0 1

This is the Heisenberg group.

An algebra is a structure which is
both a vector space — so one can

add elements and multiply them by
numbers — and has a bilinear product.
A Lie algebra is then an algebra where
the product, normally denoted [-, -] is
antisymmetric and satisfies the Jacobi
identity

[ [y 2]) + [z, (o yl] + [y, [2,%]] = O

The commutator has both of these
properties, though one can study the
properties of Lie algebras without
explicitly identifying [-, -] with a
commutator.

Of course, taking U(R) = 1 would
do the trick, but that is hardly what
we are after. Rather, we seek faithful
representations, which means that
distinct rotations are represented by
distinct transformations.

This shows that to second order in the angles, the composition of two rota-
tions is R(61 + 62 + 161 x 6,). Note that to obtain this result, all we needed
was the commutation relations Eq. (6.20). It turns out that this is true gener-
ally: if we want to reorder the product of the two series in Eq. (6.22) as a
single exponential series in some linear combination of the generators, we
just need the commutations relations. This result is known as the Baker—
Campbell-Hausdorff formula. Just for fun we give the next term to illustrate
the point

1
log[R(Bl)R(Gz)] =0, -A+0,-A+ 5 [91 -A,0; ~A}

1 1
+ 35 [01-A[01-A 8- Al — = [02- A [01- A, 07 - Al + -

1 1
= (91 + 0,4+ -6 X 0, + = [(61-62)(91 +62) —9%92 —9%91} + -

2 3
(6.23)
Problem 6.3
Suppose that [A, B] = C commutes with both A and B. Show that
exp (A) exp (B) = exp (A + B) exp (; [A, B]) . (6.24)

This shows that the commutation relations encode the same information

as the group composition law: they define a Lie algebra. The relationship
between the elements of the Lie algebra and the corresponding Lie group
is provided by the exponential map. The defining properties of the group
elements (orthogonal matrices, in the case of the rotations) correspond to
defining properties of the elements of the algebra (antisymmetric matrices).

Problem 6.4

Show that the commutator of two antisymmetric matrices is antisym-

metric.

By convention, the name of the Lie algebra is the name of the correspond-
ing group in lower case: so(3) in this case.

Representations

We will consider symmetries that act as unitary transformations on the
Hilbert space of quantum states. We say that these transformations form a
unitary representation of the symmetry transformations. For the rotations,
this means that we associate with any rotation R a unitary transformation
U(R) with the property

U(R)U(R2) = U(R{Ry). (6.25)

That is, the composition of unitary transformations reflects the group com-
position law. If states transform as

R:[¥) — [¥') = UR)[¥), (6.26)



then the wavefunction ¥ (r) = (r[¥) transforms as
R:¥(r) —» ¥'(r) = (R t|¥) = ¥(R'r) (6.27)

(in the last step we used unitarity). What can we deduce about the form of
U(R)? We first define

d
Ly = —ihepp, X =—, 6.28
k k15— (6.28)
and then observe that

ka = —ihAkX. (6.29)

Problem 6.5

Show that
U(R) = exp (—i6-L/h) (6.30)

L is of course the operator of orbital angular momentum. We have shown
that this is a representation of the generators of rotations (or it generates
the representation of rotations, whichever you prefer). As you know, the
components of L satisfy

[Lkr Ll] = ihsklmLm (631)

Is this a unitary representation? Yes, because it is clear that Eq. (6.27) pre-
serves the inner product between states. Alternatively,

Problem 6.6

Show that the exponential of any anti-Hermitian operator is unitary.

Corresponding to Eq. (6.26), operators transform as
R:0 — O =U"(R)OU(R). (6.32)

Quantities that are preserved under rotations therefore commute with the
generators. If the Hamiltonian is such a quantity, L does not change in time
by the Heisenberg equations of motion: it is conserved.

The fact that [L?, L] = 0 means that the representation is reducible: it
does not mix subspaces corresponding to different eigenvalues of L?. As you
already know, the possible eigenvalues of L? are #?I(I + 1) for | = 0,1,...
and each subspace has dimension 2/ + 1. Conventionally, one takes a basis
within each subspace consisting of the eigenstates of L, with eigenvalues
m = 1,1 —1,...,—1. The corresponding wavefunctions have angular parts
given by the spherical harmonics Yj,, (6, ¢).

Within the subspace corresponding to each ! value, the rotations are
represented by (21 + 1) x (2] + 1) matrices. These representations are ir-
reducible - they cannot be reduced further. If you picture U(R) as a big
matrix acting in the space spanned by states of different I and m, it will be
block diagonal, with each square block on the diagonal corresponding to
a given / value. If L (or more generally total angular momentum) is con-
served these irreducible representations correspond to symmetry multiplets:
degenerate subspaces spanned by states of the same energy.
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¥ (R~ 1) is a rotation of the wavefunc-
tion by R for the same reason that
f(x —y) is the function f(x) shifted by

Y.

You may notice that the commutator

of the Ly (Eq. (6.31)) differs by a sign
from that implied by Eq. (6.29). This

stems from the slightly awkward fact
that the effect on the wavefunction of
the rotation RyR, is ¥(R; 'R 'r).

The matrices representing the rotations
are therefore block diagonal, with

the different blocks corresponding to
different L? values.
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> Equivalent representations are those
related by similarity transformation.

The three dimensional / = 1 representation is the fundamental represen-
tation — the smallest faithful representation. It corresponds to the original
representation in terms of 3 x 3 orthogonal matrices.

ONE wAY to make new representations out of old is to take the tensor prod-
uct of representations.

First we have to understand what a tensor product of vectors is. Take one
vector with components v; from one vector space V of dimension dy, and
another with components w; from space W of dimension dy, and form the
dy X dw matrix (or second rank tensor) v;w;. This is denoted v ® w, and is
called the tensor product of v and w.

Now do this with all pairs of vectors forming bases in V and W. The
resulting set of matrices, numbering dy X dy, by definition span the tensor
product space V@ W.

If we have a representation of a group on V and on W, then we get for
free a representation on V ® W. Taking the fundamental representation as an
example, this is because we know the transformation law for viW; from the
transformation law for v and w

U] — 'U; = Rijv]-, w; — w: = Rijw]- 6

VW — UZZU; = Rikle’()kwl. ( 33)

Because vectors of the form v;w; span the tensor product space, this means
that for any second rank tensor

Ty — Tj = RgRyTy, or  T—T =RTR". (6.34)

However, this representation is not irreducible.

Problem 6.7

Show that this representation breaks into three:

1. Matrices proportional to the identity (1 component).

2. Antisymmetric matrices (3 components).

3. Symmetric traceless matrices (5 components).

The means that under the action Eq. (6.34), each of these three forms is

preserved. Explicitly, v;w; is decomposed as

V-W 1 1 2v-w
viw; = 3 (51']' + 5 (viw]- — iji) + 5 (Z}iw]' +ojw; — 3 51']') (6.35)

The relationship found in Problem 6.7 can be written in shorthand as
33=18305, (6-36)

where the number denotes the dimension of the representation (this assumes
that there is not more than one inequivalent® representation of each dimen-
sion, which is the case here)

The three representations on the right hand side of Eq. (6.36) correspond
to the I = 0, 1 or 2 representations. You have seen this pattern before when
you discussed the addition of angular momenta: adding two [ = 1 can give
I =0,1o0r2 (see AQP).
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The problem of addition of angular momenta is therefore equivalent to
decomposing the tensor product of representations into irreducible represen-
tations — a fine example of speaking in prose!

The fact that the irreducible unitary representations of the rotation group
are finite dimensional is not obvious. It is a consequence of the group being
compact, an idea we’ll meet shortly.

sU(2)

As you know, spin angular momentum can be half odd integer, as well as
integer. Spin 1/2 is represented by the 2 x 2 matrices S = %0, where o =
(Ux, ay, (TZ) are the Pauli matrices. Corresponding to Eq. (6.30), we expect the
effect of a rotation on spin 1/2 states to be

U(0) =exp (—iB-S/h) =exp (—i0-0/2). (6.37)

This parametrizes the most general 2 x 2 unitary matrix with determinant
equal to 1. This is a group in its own right called SU(2): the group of special
(unit determinant), unitary 2 x 2 matrices.

Problem 6.8

What property of the generators corresponds to the determinant of
U(0) being equal to 1? Notice that going from U(2) to SU(2) reduces
the dimension of the group, whereas going from O(3) to SO(3) does
not.

Eq. (6.37) shows that there is a relationship between SO(3) and SU(2).

Problem 6.9

Show that if 0 = 6

U(0) =1cos(0/2) —if-osin(6/2) (6.38)

Comparing Eq. (6.38) with Eq. (6.18) we see that when § = 27, R = 1
whereas U = —1. More generally, 0 and 6 + 27 correspond to the same
rotation (as should be obvious) but different SU(2) matrices.

To make the relationship between these two groups explicit, consider the

99

transformation
S-S =uU(e)sut(e) (6.39)
Eq. (6.41) is a representation of a Lie
group on its own generators called the
Sl e B adjoint representation.
Use the formula
1 1
exp (A)Bexp (—A) = B+ [A,B] + o [A,[A,B]] + 3 [A, [A [A B]]] +---
(6.40)
to show
u(e)sut(e) = R71(0)S (6.41)




100 AUSTEN LAMACRAFT

A homomorophism that is one-to-one
is called an isomorphism.

There is some potential for confusion
here. What a mathematician calls a 3-
sphere — denoted S® - a physicist may
call the surface of a four dimensional
sphere. We stick with the mathemati-
cal name as it immediately conveys the
dimension of the space.

Eq. (6.41) gives an explicit map from SU(2) matrices to SO(3) matrices
which respects the group structure i.e. the rotation corresponding to U;U;

is RyRy. Such a map is called a group homomorphism. Since +U give rise to
the same R, the map is two-to-one. Regarded as a representation of SU(2),
it is not faithful. Though the groups are different, they are identical in the
vicinity of the identity, and thus the Lie algebras coincide: so(3) =~ su(2).

Topological features

The elements of a Lie group are a continuum. Therefore it is appropriate
to ask what kind of space — or manifold — they form. The dimension of the
space is just the number of parameters of the group. But what about the
shape of this space? For SU(2) it is not hard to figure out. Eq. (6.38) can be
written

U=al+a o (6.42)

subject to a3 + a?> = 1. Thus we can identify SU(2) with a 3-sphere. What
about SO(3)? Eq. (6.41) shows that (a9, a) and (—ap, —a) correspond to the
same element of SO(3). Thus SO(3) is a 3-sphere with anitpodal points identi-
fied. Just for the record, the proper mathematical name for this space is real
projective space, or RP,

If you find this idea a bit strange, the following simpler example may
help. If we take a line and identify points that differ by integer multiples of
some fixed amount (this is the same thing as imposing periodic boundary
conditions), the result is a circle. Doing the same in two dimensions (e.g.

r ~ r+ pX + qy for p, q integer) results in a torus. These identifications do
not change the space locally, but affect the global topology.

To quantify how the identification of antipodal points alters the 3-sphere,
we need to introduce one of the most basic notions of topology. We say
that a space is simply connected if any closed path in that space can be
continuously contracted to nothing. Evidently this is possible for paths on

the 2-sphere, and it probably won’t surprise you to learn that the same holds
for the 3-sphere.

3 As is often the case, the higher and
lower dimensional analogs turned
out to be easier. The four dimensional
case was proven in 1982 by Michael
Freedman.

TANGENT The Poincaré conjecture stated that every simply connected, closed
three dimensional manifold is homeomorphic (roughly: equivalent if we allow
space to be smoothly deformed) to a 3-sphere. I say ‘stated” because after roughly
a century of effort this conjecture was proven in 2002-2003 by the Russian math-
ematician Grigori Perelman. The Poincaré conjecture was of such fundamental
importance in topology, and so stubbornly resistant to proof3, that it was offered
as one of the Millenium Prize Problems by the Clay Mathematics Institute, with a
prize of one million dollars. You might suppose, given the timing, that the money
played a decisive role, but in fact Perelman declined the prize when it was of-
fered in 2010, having already refused the Fields Medal (a.k.a. the Nobel Prize of



mathematics) in 2006.

What about SO(3)? It’s not hard to see that there are closed paths that
cannot be contracting to nothing, namely those joining two antipodal points
on the 3-sphere: remember that these are the same point in SO(3).

What is the implication for the rotations? Consider a rotation unfolding
as a function of time (or some other parameter), with the rotation angle
increasing smoothly from 0 to 271, whereupon a body would be returned
to its original position. This sequence of transformations — a closed path
in SO(3) — cannot be smoothly deformed to a trivial sequence where the
body remains unrotated. However, if the angle increases from 0 to 47, the
resulting path can be deformed to nothing.

This fact is sufficiently surprising that it demands a visual proof that
makes no use of the machinery of matrices and groups. The following one
is due to Hermann Weyl. As a warm up, consider one coin rolling around
the circumference of another fixed coin of equal size. If you haven’t seen this
problem before, you should convince yourself that in rolling once around the
circumference of the fixed coin, the rolling coin rotates twice.

Now imagine two cones in contact: one fixed in space and the other free
to roll on the first. Let the half angle of the cones increase from zero to 77/2.
When the angle is small, the situation is almost identical to the two coin
problem: the rolling cone rotates by (almost) 47t when it rolls once around
the fixed cone. As the half angle increases to /2, the cones become almost
flat surfaces, and the motion is reduced to a wobble, with vanishing rotation.
This shows that a 47t rotation can be smoothly reduced to no rotation.

Two MORE notions of topology are useful, but a bit more technical, so the
following is only a rough discussion. We say that a space is connected if
any two points can be connected by a path. As an example of a space that
is not connected, consider the group O(3). This includes one component,
the subgroup SO(3) of proper rotations, and another component consisting
of the improper rotations (it’s not a subgroup, as it does not contain the
identity, and the composition of two improper rotations is proper). There is
evidently no path starting in one component and ending in the other.

Finally, the notion of compactness roughly translates as finite. Thus SU(2)
and SO(3) are compact groups, while the Lorentz group, which we’ll meet
in the next chapter, is not.

6.3 How Pauli solved the Hydrogen atom

In 1926, Erwin Schrodinger published his equation and showed that it gave
the correct energy levels for the Hydrogen atom. Almost simultaneously,
Wolfgang Pauli showed that the same result could be obtained using Heisen-
berg’s matrix mechanics (see Section 2.1). You know how Schrédinger did it,
but what about Pauli? It turns out that there is a higher symmetry hiding
under our noses that allows a complete solution of the problem.

Before we get started, let’s note the following fact, which seems to de-
mand explanation. The energy levels of the Hydrogen Hamiltonian

2 2
e
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A somewhat similar example comes
from astronomy: the Earth rotates on
its axis 366% times in one year.

Figure 6.1: Weyl’s demonstration.

One possible source of confusion in

all of this is linguistic. When we say
rotation, we may envisage a rotation
unfolding in time i.e. a path in the
group starting at the identity and
finishing at some final rotation, or we
may envisage only the final rotation.
In the latter sense, there is of course no
difference between a 27 rotation and
no rotation.

This is in Gaussian units, so you won't
see any factors of 47eg.
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In the Schrédinger picture, the solution
of the radial equation involves the
generalized Laguerre polynomials of
ordern —1—1,sothatn >1—1.

The Hamiltonian Eq. (6.43) is also
known as the Kepler problem, for
obvious reasons. In this context, the
Runge-Lenz vector was discovered
repeatedly over the years. For the
somewhat murky history, see (Gold-

stein, 1975, 1976)

Vo

Figure 6.2: (Top) Elliptical orbit and
(Bottom) hodograph indicating the
direction of vy

are .
me* 1
Epim = 7?? (6.44)

We have labelled the eigenvalue by the principal (1), the azimuthal (/) and
the magnetic (1) quantum numbers, but you will notice that the energy
only depends on the first of these. An absence of dependence upon the
magnetic quantum number is a natural consequence of rotational invariance,
which one would expect to lead to a (2I + 1)-fold degeneracy. The absence
of any dependence on / is however surprising, and special to the case of
a Coulomb potential. Since ! = 0,...,n — 1, the result is that the overall
degeneracy of each energy level is n%, with n = 1,2,.... Since we know that
degenerate multiplets can arise from symmetry, it’s natural to ask whether
this unexpectedly large degeneracy is the result of some ‘hidden’ symmetry,
or what is the same thing, some extra conserved quantity.

In fact, an extra conservation law for the classical Hamiltonian was already

well known to Pauli, and is called the Runge-Lenz vector

1 r
K=—L —, 6.
—" Xp+ r] (6.45)

Problem 6.11

Use conservation of angular momentum and the equation of motion
mv = —e?r/|r|3, to show that dK/dt = 0. Show also that

K-L=0 and,

K2 +1

me*

TANGENT That'’s all very well, but probably you find this a bit unsatisfactory.
Where did K come from? What does it mean? The following picture, due to
Hamilton, sheds a lot of light on the matter. In plane polar coordinates, the an-
gular momentum perpendicular to the plane of motion is

L = mr26. (6.47)
We use this expression, and the equation of motion, to obtain the rate of change of
the velocity with angle
2 2

r e .
AT (cosf,sinf). (6.48)

dv v e

do ¢
This equation can be integrated to give

2
v(0) = vy — % (sinf, — cos®), (6.49)

where vy is a constant of integration. The motion in velocity space is even simpler
than the motion in real space: the velocity vector moves on a circle of radius ¢?/L
centered on v. The three possible motions are then:

Elliptic The origin (zero velocity) lies inside the circle, and the velocity vector
performs complete circuits (at the same angular velocity as the position vector).

Hyperbolic The origin lies outside the circle, and the velocity vector moves on an
arc of the circle, tending to the endpoints of the arc as ¢ — F-oco and the particle
move to infinity.



Parabolic The intermediate case. The origin lies on the circle, and the velocity
tends to zero as the particle escapes to infinity.

To find the relationship between the trajectory in velocity space — called the hodo-
graph — and the Runge-Lenz vector, we first note that vy and the maximum and
minimum velocities are all collinear. The maximum velocity is achieved at the
minimum distance, and vice versa. At these points the velocity and position are
perpendicular, so the two terms of Eq. (6.45) point along the major axis, and are
perpendicular to vy.

Problem 6.12

Use energy conservation at the maximum and minimum distances to show

vg = —e%i x K (6.50)

L, K and H subject to Eq. (6.46) represent five independent conserved quantities.
Since phase space is six dimensional, fixing these five means motion is restricted to
one dimension. In particular, all orbits are closed, a property that is special to the
1/r and 2 potentials (this result is known as Bertrand’s theorem).

Now, what about quantum mechanics? We have a small problem in that
Eq. (6.45) is not Hermitian, but Pauli rectified that with the guess

T
[pr—pr]—i—H, (6.51)

which indeed commutes with the Hamiltonian. The next problem is to de-

T 2me2

termine the algebra of these conserved quantities. We already know that

[Lk/ Ll] = ihEklmLm. (652&)
Furthermore, since L generates the rotations
[Lk/ Kl] = Z.hsklme/ (652b)

as you can verify by direct calculation (generally, any vector operator will
have this commutation relation with L). Finally, and least trivially

) —2H
[Kie, K;] = i L (me‘l ) (6.52¢)

Note that since L commutes with the Hamiltonian, it doesn’t matter where
we put H — we can think of it just as a number in these expressions.

Problem 6.13

[Hard] Prove Eq. (6.52c). Show further that the first of Eq. (6.46) contin-
ues to hold, while the second becomes

2H
2 2 2
K= [L +h } +1 (6.53)

Egs. (6.52) can be put in a more symmetrical form by defining

1 me*

+

SN Y .

L 5 L —ZEK , (6.54)
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Note that this isn’t an issue for L itself.
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Although we’ve seen su(2) ~ so(3)
and now su(2) @ su(2) ~ so(4),
don’t get the idea that this happens
all the time. The list of isomorphisms
between Lie algebras is actually rather
short.

For SO(3), Eq. (6.17) had an interpre-
tation in terms of rotation axis, but
this is special to three dimensions.
The matrices of Eq. (6.58) generate
rotations in planes specified by pairs
of coordinates. Only in 3D does such
a plane define a unique direction
perpendicular to it.

(we assume that the energy — to be determined - is negative as we are inter-
ested in bound states) which satisfy

[Llj’ L;r] = ihgklmLi

(L L] = ihegmLy,. (6.55)

LI, L] =0.
We see that there are not one but two su(2) algebras, whose generators com-
mute with the Hamiltonian. The degenerate multiplets will then be tensor
product representations characterized by a pair (s4,s—) of spin quantum
numbers. Bearing in mind that s4 can be integer or half integer, we instead

define n+ = 25+ + 1. The degeneracy of a multiplet is then nyn_. But then
we notice that the condition K- L = 0 implies

(L*+L7)-(L*—-L7) =0, (6.56)

or (L*’)2 = (L_)z. Thus ny = n_ and we have proved the existence of
degenerate multiplets of size n*> with n = 1,2,.... If we wish, these rep-
resentations can be split up into irreducible representations of the angular
momentum LT + L™, using the usual addition rules

nn=_2n—-1)®(2n—-3)®---1 (6.57)

We are almost done: it remains only to find the eigenenergies.

Problem 6.14

Use Eq. (6.53) to find the energy levels Eq. (6.44).

50(4)

It turns out that the sum of two su(2) algebras Eq. (6.55) is isomorphic to
another Lie algebra called so(4). The corresponding group, SO(4), is the
group of rotations in four dimensions.

To see this relationship, we consider rotations in 4D in analogy with our
treatment of SO(3) in Section 6.2. The generators are the antisymmetric
4 x 4 matrices, and any such matrix may be expressed in terms of the six
generators

000 O 0 0 00 00 0 O
000 O 0 0 01 00 -1 0
Ly = ’ Ly = L=
0 00 -1 0 0 00 01 0 O
001 0 0 =100 00 0 O
-1 0 00 -10 0 00 -1
K, — 1 0 00 Ky = 00 0 O K, = 000 O ‘
0 0 00 1.0 0 O 000 O
0 0 00 00 0 O 100 O
(6-58)

The algebra of these generators is

(L, L1] = eximblm
(L, K] = eximKim (6.59)
(K, Ki] = eximLm-



Eq. (6.52) coincides with this algebra after the redefinition

1
L— —L
ih
1 et (6.60)
K— —/—=K
ih\l —2E
Eq. (6.53) becomes
2 2 o met

which plays the role of the conserved quantity L? for SO(3). The ground
state is therefore an SO(4) singlet, where the right hand side vanishes.

The SO(4) symmetry turns out to have a remarkable geometrical signifi-
cance. The motion in momentum space can be mapped to free motion on
the 3-sphere, and SO(4) is the symmetry group of this space. Furthermore,
taking the energy to be positive has the effect of changing the signature of
the metric from (+,+,+,+) to (—, +,+,+) (c.f. Eq. (6.60)), so the symmetry
group becomes the Lorentz group of special relativity, which is the subject of
the next chapter. These developments are described in (Bander and Itzykson,
1966a,b).
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Note that Eq. (6.61) is not satisfied by
the matrices Eq. (6.59), but rather by
their rezpresentations matrices, just as
L? = 1’I(I + 1), with different I values
for different representations. Eq. (6.59)
is the fundamental representation, and
has L2 + K2 = —3.






7
Relativistic quantum mechanics

Though relativity was still a young theory, it weighed heavily on the minds
of the early quantum mechanics. In Schrodinger’s notebooks from 1925,

there appears the equation now known as the Klein—-Gordon equation Oskar Klein and Walter Gordon
were two of the numerous people to
1 92 > m2c? rediscover it the following year.
;W—v +? T(I‘,t) =0. (71)

It’s not hard to see the motivation for this equation. We can find plane wave
solutions

Y(r,t) =exp(i[p-r— Et] /1), (7.2)
where the energy and momentum satisfy the familiar relativistic relationship

More formally, one can show that
EZ — 2 CZ mZ C4. . Eq. (7.1) is invariant under Lorentz
P + (7:3) transformations.
Eq. (7.1) therefore seems like a good candidate to replace the Schrodinger

equation, which has free particle solutions satisfying E = p?/2m.

Schrodinger abandoned the Klein—-Gordon equation after realising that it
does not predict the fine structure of Hydrogen correctly — not least because
the spin of the electron is not included. The success of Dirac’s theory of the
relativistic electron of 1928 seemed to confirm that Eq. (7.1) was not part of
Nature’s plan.

As we'll see below, there are other conceptual difficulties with the interpre-
tation of the Klein-Gordon equation, and other relativistic wave equations
(including the Dirac equation), as equations for the wavefunctions of single
particles. The first of these is that Eq. (7.3) has both positive and negative
energy solutions. The same could be said of classical relativistic particles,
of course, but if such a particle had positive energy at one time, there is no
way for it to evolve into one with negative energy at a later time. When we
add external potentials to Eq. (7.1), however, it is possible for negative fre-
quency components to be generated even if none are present initially, and
the physical significance of these is unclear.

As we will see, relativistic wave equations are more properly understood
as the equations of motion of quantum fields describing a system of many
particles, just as in our discussion of second quantization in Chapter 5. Fur-
thermore, this interpretation demands that each type of particle is associated

with an antiparticle, a twin with the same mass but opposite charge. This is only in the relativistic case.
Antiparticles are not mandated by

. . . . . . . . nonrelativistic case we discussed in
of a spin-0 boson field. This means that it describes composite particles like Chapter 5.

Properly reinterpreted, Eq. (7.1) is understood as the equation of motion

the pions. The only elementary particle that might be described by the Klein—
Gordon equation is the Higgs boson.
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This section overlaps with Sections 3.8
and 4.7 of the TP1 lecture notes.

This is after all the whole idea of
Hamiltonian mechanics.

7.1 Antiparticles

Let’s compare the mathematical structure of the Klein-Gordon equation
and the Schrodinger equation. One is first order in time, and the other sec-
ond. This is not a minor difference: the equivalence of the Schrodinger and
Heisenberg pictures, and our whole understanding of time evolution in
quantum mechanics, rests upon the unitary transformation

[¥(t)) = exp (=iHt/1) [¥(0)) . (7.4)

However, to propagate a second order equation forward in time requires that
we know not just ¥(r, t), but also 9;¥(r, t), just as we must know positions
and velocities to solve Newton’s equation.

From a purely mathematical standpoint, we can easily replace Eq. (7.1)
with a system of first order equations by introducing a new field I1(r, )

oY (r, t) =I(x, 1)

oIl(r, t) = — {mz — Vz} Y (r,t). 75)
(Here and in the rest of this chapter, we are going to work in units where
I = ¢ = e = 1). This is not particularly satisfactory, though: what is the
meaning of T1(r, t)? Is [¥(r, t)|? still the probability density for the particle?
The resolution of this difficulty is rather drastic. We are going to abandon
the interpretation of Eq. (7.1) as a wave equation for the wave function of
a single particle. Instead, we will interpret it as the Heisenberg equation
of motion of a field operator describing a many particle system. We have
met this other interpretation already in Chapter 5 (c.f. Eq. (5.53)). There,
because we dealt with non-relativistic physics, both interpretations — single
particle and many particle — were possible. In the relativistic case the latter
interpretation is the only one that makes sense. Bear in mind, then, that
what follows is not a derivation, starting from the one particle picture, but
rather a heuristic explanation of new physical laws.
How can we obtain Eq. (7.5) as a Heisenberg equation of motion? Evi-
dently, the commutation relations that we found in Chapter 5

90, 4"(0)] = s —7) (7:6)

will not do the trick. Instead, we need something that resembles the familiar
commutation relation [g, p] = i of position and momentum

@), 7" ()] = [9' (), 7(r)] =is(x—7), 7:7)
together with the Hamiltonian

Hie = / dr [ VTV + myTy + ) (7.8)

Problem 7.1

Check that Egs. (7.7) and Eq. (7.8) give Eq. (7.5)
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To get a feel for what is going on here, let’s compare the two systems
Hnr = wa'a, {a,aﬂ =1
Hr =p'p+ 'z, {z, p*} = [z*,p} =1 (7.9)

HnR is analogous to a non-relativistic system with the commutation relation
Eq. (7.6). The real and imaginary parts of a are conjugate to one another,
and the time evolution is a(t) = exp (—iwt)a(0). If we were talking about
classical variables, we would say that the plane of complex a was the phase
plane, and we can only move in a clockwise direction as t increases.

Hp is analogous to the relativistic system. It describes a 2D harmonic

oscillator, as we can see if we write the (non-Hermitian) z and p variables in
terms of the (Hermitian) Cartesian components

z= (x +1iy)

(7.10)

p= (px +ipy) -

E\HE\H

Thus, though z is complex it commutes with z'. If we want to describe this
system in terms of creation and annihilation operators we have to introduce
two pairs. We could do this separately for x and y or instead use complex z
and p to define

w (7.11)
I =1\/= 2 Fp,
in which case
Hr = w [a*a + b*b} + const. (7.12)
The time evolution is then
a(t) = exp (—iwt)a(0)
. (7.13)
b(t) = exp (—iwt) b(0).
Note, however, that
1
2(t) = \[ 55 [a() +57 ()]
: (7-14)
=\ [a(O) exp (—iwt) +b"(0) exp (zwt)} ,

so that the time dependence of z(t) contains both positive and negative frequen-
cies. From the point of view of a 2D oscillator this is perfectly natural: the
general motion will be one with elliptic polarisation. To interpret this dou-
bling of the degrees of freedom from a particle point of view, it’s natural to
suppose that a and b describe distinct particles.

Before continuing, let’s quickly run through the same analysis for the
Klein-Gordon Hamiltonian Eq. (7.8). We expand ¢ (r) and 77(r) in Fourier

= ;1 / ﬁ {akexp (ik - 1) + bf exp (—ik - r)}

r) = —i;ﬁ [akexp (ik - 1) — bj exp (—ik~r)} .

modes as

(7.15)
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Figure 7.1: Electron-positron pair
production in a bubble chamber. The
two particles move in helical paths
in the presence of a magnetic field,
with opposite senses indicating their
opposite charges.

These fields satisfy Eq. (7.7) for any wy. The choice of wy is suggested by the

Hamiltonian. If we take
wi = VK2 +m2, (7.16)

then cross terms involving 4, b_, and afb", disappear and the Hamiltonian
is the sum of terms describing the two particle types

Hygg = Zwk [a;r(ak + bltbk} . (7.17)
k

Problem 7.2
When the modes evolve as in Eq. (7.13), so that

P(r, t) = ;1/2;( [akexp (i k- r— wit]) + bfexp (—i [k-r—a)kt])}

(7.18)
verify that the Klein-Gordon equation is obeyed.

When we interpret (r, t) as an operator, with contributions from particle
annihilation and antiparticle creation modes, the negative frequencies are no
longer mysterious.

What can we say about the two types of particles? Evidently they have
the same mass, as the dispersion relation Eq. (7.16) is the same for both a’s
and b’s. To find out their charge we add a vector potential, which appears in
HKG as

Hig = [ dr [(V +iA)y" - (V —iA) g+ mPy'y + '] (7.19)

Taking A to be constant for simplicity, we find that Eq. (7.19) is solved by a
simple generalisation of Eq. (7.15)

P(r) _;HZ;k {akexp(i[k+A] -r)+b1texp(—i[k—A] r)}

(7.20)
ni(r) = —i;ﬁ [akexp (ik+A]-r1) —bltexp(—i[k—A] r)] .

Since A= — [ ! E(t')dt', we see that an electric field pulse shifts the momenta
of the two types of particles in opposite directions, showing that they have
opposite charge.

TANGENT 1If this was all there was to it, antiparticles might still be a curiosity,
akin to the negative energy solutions of E2 = p? + m?. After all, Eq. (7.17) con-
serves the two types of particles separately, so maybe there are just no b particles
in the universe. This would be rather asymmetric, and in fact the imbalance be-
tween matter and antimatter in the observable universe is a big mystery.

However, there are mechanisms that create antiparticles, or rather particle-
antiparticle pairs. The most famous example is the decay of an energetic photon,
clearly visible in cloud or bubble chambers, which can occur when the energy of
the photon exceeds twice the rest mass energy of an electron. Describing this pro-
cess requires us to consider the interaction of the quantum field of the photon with
the field of the charged particles, which goes beyond the scope of this course.

Pair production can also occur in strong electric fields, which may be treated by
introducing the classical vector potential into the Hamiltonian as in Eq. (7.19). In



writing Eq. (7.20) we assumed that A was not only constant in space but also in
time, so linking an expression valid for static A to an electric field pulse was a
piece of sleight of hand that turns out to be only justified for adiabatic changes in
A, corresponding to low fields.

Let’s discuss this problem a little more quantitatively, restricting ourselves to one
spatial dimension. In a spatially constant but time varying vector potential, a
particular plane wave component ¢ of the Klein—-Gordon field satisfies

Pr(t) + w]%_A(t)lPk(t) =0, (7.21)
which is just the equation of a (2D) oscillator with a time dependent frequency. For
a constant electric field we have A = —Et and so

W (t) = “’lng(t) = (k+ Et)® + m?. (7.22)

When E is small we expect the oscillator to adiabatically follow the changing
frequency, so that

%(t) {ak exp (—i/tw(t/)dt') + bik exp (i/tw(t/)df/ﬂ . (7.23)

When E is not small, adiabaticity is violated and the amplitudes of the two com-
ponents are mixed. Using the analogy to the Schrodinger equation, the result is

Pi(t) =

expressed in terms of a transfer matrix
ik,init — u v ik,ﬁna] (00) (7 24)
* * 4 °
bk init vou BTt final ()

u> — Jo]* =1 (7.25)

where

We have already calculated this effect twice: in the Landau—Zener problem (Sec-
tion 1.3) and the quantum point contact (Section 3.C). As in the latter case, \v|2 is
the ratio of reflection to transmission coefficients, and is given by

7'(1’1’12

|o? = exp <7T) . (7.26)

Remember that we are using the Heisenberg picture, where the states do not
evolve. A vacuum state for the initial 2 and b particles

B init | VAC) = b_y i (—00) [VAC) =0, (7.27)

therefore satisfies
(uak,final + Zmik,ﬁnal) |VAC> =0. (7.28)

In terms of 4, ¢ and by ¢ |[VAC) therefore contains a factor

exp <_(U/u)az,ﬁnalbik,ﬁnal) I[N, =0,N, =0). (7.29)

Problem 7.3

Show that in the state described by Eq. (7.29) the probability of finding n
(k, —k) pairs is
p= il 1

P,=(1—p)p" =
n=(1=p)p" u 1+ exp (mm?/E)’

(7-30)

with an average 71 = p.
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Notice the resemblance to the WKB
wavefunction, which arises because
Eq. (7.21) can be interpreted as a
1D Schrédinger equation, with time
playing the role of space.

If you are wondering where this
parametrisation comes from, look back
at Problem 3.2. Note that the same
transformations appear in Problem 5.9.
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* The scale set by the exponent in

Eq. (7.31) corresponds to a variation of
electric potential energy by mc? over
the Compton wavelength h/mc of the
particles.

Including spacetime translations as
well as transformations that preserve
the origin leads to the Poincaré group.

It’s straightforward to turn this into a calculation of a rate, by remembering that in
a system of length L with periodic boundary conditions, the spacing of k states is
27/ L, and the wavevectors of individual modes are increasing at a rate E. Thus

EL 1

Rate = oo —
ate 27t 1+ exp (mm?/E)

(7.31)

which is proportional to the system size, so the meaningful quantity is the rate of
pair production per unit volume.

This process of pair production is known as the Schwinger mechanism. Though
we discussed the case of bosons described by the Klein—-Gordon field, the same
process occurs for all relativistic fields. Conceptually, it is the simplest demonstra-
tion that antiparticles are real and may be created. Practically, the colossal fields®
required to tear particle-antiparticle pairs out of the vacuum have never been
realised, though experiments continue with high intensity lasers.

7.2 The Lorentz group

The Lorentz group is closely related to the group SO(4) that we met at the
end of the last chapter. Instead of considering rotations that preserve the
squared length of a 4D vector, leading to the orthogonality condition, we
look for linear transformations that preserve the squared spacetime interval

$2 = (ct)? — X% (7.32)

We introduce some standard notation for 4-vectors. x* = (ct, x,y,z) is the
position 4-vector. Greek indices indicate that all four entries are included
(e.g. 1 =0,1,2,3), while Roman indices include only spatial coordinates (e.g.
i =1,2,3). The squared spacetime interval is then

guvxt'x’ = xxt (7.33)

> 2 2 2
xuxlt = x5 — x] — x5 — x3, (7.34)

where the metric tensor is

10 0 0
0 -1 0 0

§=1o o -1 ol (7:35)
00 0 -1

and indices are raised and lowered by contraction with S = g ie. Xy =
guvx". The scalar product g,y x"y" is preserved by a linear transformation
Acxtt— AV Y if
NN =g, (7.36)

which replaces the orthogonality condition. This defines a group called
O(1,3), which reflects the signature of the metric.

As in the case of O(3), the Lorentz group consists of more than one con-
nected component. Eq. (7.36) implies

(detA)? =1, (7.37)

so we can again can distinguish transformation based on the sign of the
determinant, with those transformations having det A = —1 being discon-
nected from the identity, and those with det A = 1 forming a subgroup
denoted SO(1,3).
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There is, however, another distinction to be made, that does not arise in
the case of the rotations. The past and future light cones separate 4-vectors
with positive squared length (time-like, with our choice of signs) from those
with negative squared length (space-like). Because the two cones touch only
at the origin, we can distinguish transformations based on whether they
take a 4-vector to another within the same light cone, or to the opposite light
cone. It’s not hard to see that these two cases are distinguished by the sign
of A, with the case A] > 0 corresponding to those transformations that
preserve the direction of time (called orthochronous) and AJ < 0 describing
those that don't.

So O(1, 3) has four disconnected components. The subgroup of proper
(det A = 1), orthochronous Lorentz transformations is denoted SO™(1,3)
and is called the restricted Lorentz group.

Lie algebra

Working out the Lie algebra of so(1,3) is a small variation on the case of
so(4) discussed in Chapter 6. Writing a transformation in terms of a genera-
tor (a.k.a. member of the Lie algebra) A

AN =exp(A), (7.38)

we find that the condition Eq. (7.36) on A means that the generator satisfies

Mg+ gA=0. (7.39)

The left hand side is a symmetric matrix, so this gives 10 linear conditions
on the 16 elements of A, leaving a 6 dimensional space of solutions. Within
the 3 x 3 block corresponding to the spatial coordinates, A is antisymmetric,
just as in the case of so(3) (which is of course a subalgebra). The difference
from so(4) is that

Aoi = Ao, =123 (7.40)

A complete basis is provided by

000 O 0 0 0O 00 0 O
000 O 0 0 01 00 -1 0
Jx = ’ Jy = ,dz =
000 -1 0 0 00 01 0 O
001 0 0 -1 0 0 00 0 O
010 0 010 0 001
K, = 1000 Ky = 0 00O K. = 0 00O ,
0 00O 1 000 0 00O
0 00O 0 00O 1000
(7-41)
and the algebra of these generators is
e di] = eximdm
[k Kil = eximKim (7.42)

(K, Ki] = —€ktmIm-

The only difference from so(4) is the minus sign in the last of these.
A general SO™(1,3) transformation can then be written as

N6, @) =exp(0-J+ ¢ K). (7.43)
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To check that this chimes with what you already know, consider the trans-
formation corresponding to 8 = 0, ¢ = (¢,0,0). Then it’s easy to show

cosh¢ sinh¢ 0 0
sinh¢ cosh¢ 0 O
A= , .
0 0 10 (7-44)
0 0 01
which in more elementary notation is
x = (x+0t)
(7-45)
t=9q(t+0vx),

withy = (1 —02)71/2 = cosh¢. Eq. (7.45) corresponds to a boost to a
reference frame moving with velocity (—v,0,0).

The appearance of hyperbolic rather than trigonometric functions is an
indicator that we are dealing with a noncompact group. One other feature
worth remarking on, not obvious in elementary treatments of Lorentz trans-
formations, is that the generators of boosts in different directions do not
commute with each other. The consequence is that a sequence of boosts
around a closed path in velocity space is associated with a rotation. This
is the phenomenon of Thomas precession, which plays a role in the spin-
orbit interaction (see AQP). Since Thomas precession is built into the Dirac
equation we won't discuss it further.

SL(2,C) and spinors

In Chapter 6 we saw that the rotations were realised on spin 1/2 states by
the elements of SU(2). A relativistic theory of spin 1/2 particles requires
that we find how this transformation law is extended to include the Lorentz
transformations. This turns out to be remarkably painless. The relevant
transformations are those of the group SL(2,C), the special linear group of
degree 2. This is the group of complex matrices (that’s what the C indicates)
of unit determinant.

Before seeing how this group is related to SO*(1,3), let’s introduce it in a
little more detail. A general element has the form

S = (Z Z) . ad—bc=1. (7.46)

The condition of unit determinant means that the elements of the Lie algebra
are defined only by the property that they are traceless. A complete basis is
provided by the six matrices

— 50, Ki= -0; (7.47)

Problem 7.4

Of course, the notation is not an accident. Verify that these satisfy
Eq. (7.42).
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The SL(2,C) transformation corresponding to Eq. (7.43) is then

S=exp(0-]+¢-K). (7.48)

To make this map explicit we need the generalisation of Eq. (6.41), which
provides the (two-to-one) homomorphism of SU(2) to SO(3). In the present
case, we have

5(0,)0"5"(0,9) = (A6, 9)] ") o, (7.49)

where o# = (00,01,(72, oA ), and =1 (we put the indices upstairs because

this quantity transforms as a 4-vector). Once again the map is two-to-one.

Problem 7.5

Show that this holds for &8 = 0. You will need the analog of Eq. (6.40)
for e BeA.

There is, however, an inequivalent way to relate the two groups

s'6,9)] S0 = (N0.90 ) 0" @50

0 gl —¢2, —(73). The two component complex vectors on

where 7# = (0
which S acts are called spinors, and the two representations corresponding
to Eq. (7.49) and Eq. (7.50) are called right handed and left handed Weyl

spinors
A6, @) :p+ — S5(0,9)p+

- (7.51)
A0, 9)p- — [sT0,9)] v

7.3 The Dirac equation

Eq. (7.49) and Eq. (7.50) immediately suggest a possible wave equation — or
in fact two — for spin 1/2 particles

s =0

.52
o =0, (7:52)

known as Weyl equations. The amazing thing about these equations is that,
by virtue of the transformation property Eq. (7.49) and Eq. (7.50), they are
Lorentz invariant despite being first order in space and time derivatives. It’s
easy to verify that if i (x/) is a solution, then so is S¢; (A¥,xV).

However, the Weyl equations suffer from a serious shortcoming. By ap-
plying the operator 7,0 to the first and ¢,,0" to the second, you can see that
they both satisfy the massless Klein-Gordon equation

M9, = 0. (7.53)
Thus, they are of no use in describing massive particles . Adding a mass The Weyl equations describe neutrinos
term in the obvious way in th'e 0r1g1na‘1 Standard Model (,)f
5 particle physics, although neutrinos
ot ay Py =myy, (7.54) are now known to have (tiny) masses.

violates Lorentz invariance. However, the combination

"0y = mip_

l'U'yayl’b_ = my., (7.55)
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Figure 7.2: Plaque commemorating
Dirac and his equation before installa-
tion in Westminster Abbey.

Dirac initially suggested that the anti-
electron might be the proton, the only
positively charged particle known at
the time, but Weyl pointed out that
they had to have the same mass.

is Lorentz invariant. We can present these as a single equation by assembling
our two component Weyl spinors into four component Dirac spinors

YR
Y = .56
<¢L> (7.56)

and defining the gamma matrices

0 1 - 0 —o
0 __ i_
7= (11 0>, v = (ai 0 ) (7.57)

The gamma matrices obey the anticommutation relations

{7, 2"} =281 (7-58)

We can finally write the Dirac equation for massive spin 1/2 particles as

(iv"9, —m)¥ =0 (7-59)

The Dirac equation explains a number of properties that had to be in-
cluded in an ad hoc way in the nonrelativistic theory of the electron, most
notably that the gyromagnetic ratio (or g-factor) of the electron is 2 (give or
take corrections due to QED, which require the theory of interacting quan-
tum fields).

Like the Klein-Gordon equation, it has negative frequency solutions,
which were the cause of much head-scratching at the time. As we discussed
earlier, the way out is provided by reinterpreting Eq. (7.59) as a Heisenberg
equation of motion of the electron field, which necessitates the existence
of anti-electrons, or positrons. Interestingly, it is not possible to quantise
a spin 1/2 — or generally half odd integer spin - field using commutation
relations. Anticommutation relations must be used instead, meaning that
such particles are fermions. The correspondence

Integer spin <— Bosons

. . . (7.60)
Half odd integer spin <— Fermions.

is known as the spin statistics connection.



A
Operator Kung Fu

Time for a workout!

A.1 General operator algebra

Some properties of the commutator [A, B| = AB — BA of operators A and B

[A,BC] = [A,B]C+ B[A,C], ‘chain rule’,
o (A.1)
[A,[B,C]] + [B,[C,A]] +[C,[A,B]] =0, Jacobi identity
Problem A.1
Suppose [A,B] = «, a constant (or if you prefer [A, B] = a1, a multiple

of the identity operator)
1. Find [A, B"].
2. Find [A, eP]. Hint: write the operator exponential as a power series.

3. Find [A, f(B)], where f(B) is some function of B defined by its
power series.

The following formula is frequently useful®

e"Beh = B+ [A,B]+ 3 [A[AB] + 5 [4[A[AB] +
=41

where the second line is just shorthand for the first.

(A.2)

Problem A.2

Prove this. Hint: consider the differential equation in x obeyed by
eXABe—XA

Problem A.3

Show that e™¥/" f(X)e=P¥/" = f(X +y), where [P, X] = —ih

In AQP operators wore hats: we’ll
omit them unless there is a danger of
ambiguity

* It sometimes goes by the name
Hadamard lemma.
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Problem A.4

For [A,B] =«

1. Show that
eeP = eA+Bet/2 — pBppn (A.3)

2. [Gluttons for punishment only] Show that
min(n,m) L m n L L
m pny _ | n—k Am—
[A™, B"] k; uck.(k)(k)B AME (A.4)

Hint: Find [e*4, ePP] and compare coefficients in the Taylor series.

A.2  Differential operators

Problem A5

The 3D Laplacian can be written

1 L2
2 _ 2 B
Ve = 2 oy (r 8,) 2
where L = r x p is the orbital angular momentum. Check this directly

starting from
(r % P)* = X;pixpk — Xjpixipj

and then using the canonical commutation relations. Hint: r- V = r%.

A.3  Angular momentum algebra

The operators J could be orbital Recall that the vector of angular momentum operators J satisfy
angular momentum L = r X p,
spin angular momentum S, or a

combination of the two Ul" ]]] = ihsijk]k' (A.5)
Problem A.6
For a spin in a magnetic field H = —B - S find the form of the Heisen-
berg equations of motion 5 = £[H, S| obeyed by S(t) = ¢/H*/1Se=iHt/h,

Problem A.7

For B = Bz, find S(t) = e/H/nSe=Ht/ explicitly using the Hadamard
lemma Eq. (A.2) and check that it obeys the equation of motion from
the previous problem.




A.4 Oscillator algebra

We'll use the term oscillator variables to describe a pair of a, a’ of operators
satisfying [a,a'] = 1. When you met the quantum harmonic oscillator

2

_ 1 5
H—Zm—i-zmwx, (A.6)

you will have defined the pair

o ) (A.7)
t_ mwr P
“ T\ 2 (x lmw) ’
which satisfy this basic relation. This in turn leads to
[N,a] = —a [N,a'] = +at (A.8)

where N = a'a is the number operator. Summarizing the results of AQP,
Eq. (A.8) tells us that if |n) is an eigenstate of N with eigenvalue n, a* |n)
is an eigenstate with eigenvalue n + 1. Starting from the state |0), we can
construct an orthonormal eigenbasis

t\n
n) = (f) 0). (A9)

These states obey the fundamental relations

atln) =vVn+1jn+1) aln)=+vnln—1). (A.10)

Problem A.8

Suppose the Hamiltonian Eq. (A.6) is abruptly changed to

PPl 5
H=—+ -mw"x" 4+ ax. A1l
2m * 2 ( )
That is, a linear potential (constant force) is introduced, which shifts the
minimum of the overall potential by xo = —2a/mw?.

We can write the eigenstates of the new Hamiltonian as a translation
of those of the old Hamiltonian |ninew) = e 70 |ngq). If the system is
initially in its ground state, the amplitude to find the system in one of
the excited states of the new Hamiltonian is then

<nnew‘oold> = <nold| eipx[] |Oold>

1. By writing p in the exponent in terms of a and a', evaluate the am-
plitude. Hint: first normal order the exponential, which means to put
all the occurrences of a to the right of occurrences of at. This can be
done using the result of Problem A.4.

2. What is the probability distribution of excited states?

THEORETICAL PHYSICS II
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Note that the new Hamiltonian in Problem A.8 is naturally written in

terms of new oscillator variables

Ay, =a-+ Exo (A2
mw
a;rfo = Cl+ + ﬁxO

The shift leaves the commutation relations unchanged.

Problem A.g

Verify that Eq. (A.12) is the result of applying the unitary transforma-
tion used in Problem A.8 to the oscillator variables, i.e.

ay, = e 'Pge'P* (A13)
. . .13

t _ —ipxg T ipx

ng =e P 0g ep 0

Another commonly occurring transformation of oscillator variables
that preserves the commutation relations may be found by observing that
[a,a’] = 1 for any w in the original definition Eq. A.7. For the harmonic
oscillator, there was a natural choice, as the Hamiltonian takes on a simple
form when w is the natural frequency of the oscillator. But from a purely
algebraic point of view any member of the family of operators parametrized
by a

5 (v +i8)
— ax +1—
oo (A14)
V2h

has the same properties.

Problem A.10

1. Find the linear transformation that connects the oscillator variables
at two different values of a

2. Show that this transformation can be effected by a unitary transfor-
mation of the form

U, = exp(ixa’a’ — aa)) (A.15)

for some choice of «.

3. What is the effect of this transformation on the variables x and p?

Problem A.11

[Harder] Adapting the method of Problem A.8, find the probability to be
in each of the excited states after the frequency of the oscillator is shifted

from w; — wy.
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