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We discuss the correlation properties of current carrying states of one-dimensional insulators,
which could be realized by applying an impulse to atoms loaded onto an optical lattice. While the
equilibrium noise has a gapped spectrum, the quantum uncertainty encoded in the amplitudes for the
Zener process gives a zero frequency contribution out of equilibrium. We derive a general expression
for the generating function of the full counting statistics and find that the particle transport obeys
binomial statistics with doubled charge, resulting in super-Poissonian noise that originates from the
coherent creation of particle-hole pairs.

The characterization of particle fluxes using noise and
full counting statistics (FCS) has played a very prominent
role in quantum optics and, more recently, mesoscopic
physics. Lately, these same ideas have come to the fore in
the study of cold atomic gases, where noise measurements
have been shown to be sensitive probes of inter-particle
correlations1,2 as well as quantum statistics3,4.

Although the idea of measuring the full distribution
of particle transport has generated great theoretical in-
terest recently for the case of massive particles (usually
electrons)5,6, the experimental determination in Ref. 3 of
the FCS for an atom laser represents the first such mea-
surement. The observation of Poissonian statistics with-
out bunching confirms that the atom laser shares many
characteristics with its optical counterpart. This means
that the noise spectrum

S(ω) =
∫
dt eiωt〈Ĵ(0)Ĵ(t) + Ĵ(t)Ĵ(0)〉, (1)

is proportional to the current: S(ω) = 2〈Ĵ〉. The zero
frequency contribution is usually called shot noise, and
is characterized by a Fano factor F ≡ S(0)/2〈J〉, here
equal to 1. The FCS is characterized by the generat-
ing function χ(λ, T ) for the moments of the number of
particles transported in time T . Its logarithm generates
the cumulants of the distribution. Thus for the Poisson
distribution we have

lnχ(λ, T ) = 〈Ĵ〉T
(
eiλ − 1

)
.

Most discussions in mesoscopic physics concern the
generation of shot noise from partitioning of the parti-
cle flux by localized scatterers. In this Letter we con-
sider another natural source of shot noise: the Zener
process by which current-carrying states are generated
on a lattice7. Zener tunneling has been observed and
analyzed in one-dimensional optical lattices loaded with
cold atoms8,9, and this is a natural setting for the phe-
nomena that we will discuss. Our aim is to extend Zener’s
result − (Φ/2π~) ln [1− PLZ ] for the transition rate per
unit volume, where PLZ is the Landau-Zener probability
and Φ the applied force, to the entire distribution of the
resulting charge transport.

FIG. 1: a) Schematic view of particle-hole pair production
in a one-dimensional insulator subject to a force. b) The
discretization used to evaluate the counting statistics.

When fermions are partitioned by a localized scatterer
with transmission probability T , it was found that the
Fano factor is 1 − T 10, i.e. the noise is suppressed rel-
ative to the Poisson case. In Ref.5 this suppression was
revealed to be a consequence of the binomial statistics of
charge transport. In the present case, we might expect
by analogy that when PLZ is small, Poissonian statis-
tics is obtained with a Fano factor of one, falling to
zero as the probability rises to unity. Such an expec-
tation corresponds to ‘classical’ picture of particle-hole
creation, illustrated in Fig. 1a). Remarkably, this ex-
pectation is only partially borne out. We find that the
FCS resulting from an impulse applied to an insulating
state on a one-dimensional lattice is binomial, but with
doubled ‘charge’. This means that the Fano factor is
F = 2 (1− PLZ). The origin of this unusual ‘bunching’
behaviour, which can occur for bosons or fermions, is the
coherent creation of particles and holes. There is a clear
analog to the doubling of short noise predicted11–13 and
observed14,15 in normal-metal superconductor junctions
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due to the coherent Andreev reflection process.
There are two natural situations to consider. Fermions

loaded onto a lattice form a band insulator at integer fill-
ing. In the absence of interactions current-carrying states
can be long-lived as there is no way for quasi-momentum
to relax16. Restricting ourselves to two bands, one empty
and one full – more bands present no difficulty – we fix
for concreteness the massive Dirac band structure near
the Brillouin zone boundary

HB = cp σ̂3 + u σ̂1. (2)

Here p is the deviation of the (quasi-)momentum from
the Brillouin zone boundary, c is a velocity, set to unity
from now on, and 2u is the bandgap, proportional to the
intensity of the laser light field that mixes left and right
moving particles. In the basis of left and right movers,
the two bands have the form

ψ+(p) =
1√

2Ep(Ep − p)

(
u

Ep − p

)
ψ−(p) =

1√
2Ep(Ep − p)

(
p− Ep

u

)
(3)

with energies E±(p) ≡ ±Ep ≡ ±
√
p2 + u2. Introducing

the corresponding creation and annihilation operators,
the normal-ordered current operator at the origin can be
expressed as

Ĵ(0) =
∑
p,p′

vB
+(p, p′)ψ̂†+(p)ψ̂+(p′)

−vB
−(p, p′)ψ̂−(p′)ψ̂†−(p)

+
[
wB(p, p′)ψ̂†+(p)ψ̂−(p′) + h.c.

]
(4)

(we work in units with ~ = 1) Here

vB
+(p, p′) =

u2 − (Ep − p) (Ep′ − p′)
2
√
Ep(Ep − p)

√
Ep′(Ep′ − p′)

vB
−(p, p′) = −vB

+(p, p′)

wB(p, p′) = − u (Ep − p+ Ep′ − p′)
2
√
Ep(Ep − p)

√
Ep′(Ep′ − p′)

(5)

When p = p′ the band diagonal parts of the cur-
rent Eq. (4) involve the group velocities vB

±(p, p) =
dE±(p)/dp.

We will also consider a one-dimensional bosonic Mott
insulator. modeled by hardcore bosons b2i = 0 on a lattice
at half filling, with a staggered field17,18

HM =
∑

i

[
b†i bi+1 + h.c

]
+ u (−)i

b†i bi (6)

This model is equivalent under a Jordan-Wigner trans-
formation to a band insulator of fermions with two bands.

The expression for the current, found by standard meth-
ods19, has the same form as Eq. (4), with

vM
+ (p, p′) =

(Ep′ − u) ξpeip′ + (Ep − u) ξp′e−ip

2
√
Ep(Ep − u)

√
Ep′(Ep′ − u)

vM
− (p, p′) = −vM

+ (p, p′)

wM (p, p′) =
ξpξp′e

ip′ − (Ep − u) (Ep′ − u) e−ip

2
√
Ep(Ep − u)

√
Ep′(Ep′ − u)

, (7)

with Ep =
√
ξp + u2 and ξp = sin p, with p the deviation

from π/2, the zone boundary. For p� 1 Eq. (7) coincides
with Eq. (5). The specific forms of v±(p, p′) and w(p, p′)
will not be needed. We now consider what happens
when an impulse is applied to the lattice, that is, a time-
dependent but spatially constant force Φ(t). The prob-
lem remains translationally invariant with each momen-
tum state pi being mapped to one at pf = pi +

∫
Φ(t′)dt′.

In general, there is some amplitude to make a transition
to the upper band, meaning that the wavefunction of a
given momentum state, in the basis of upper and lower
bands, evolves as

Ψi(pi) =
(

0
1

)
→ Ψf (pf ) =

(
Bpf

Apf

)
.

We now use these amplitudes to compute the resulting
current fluctuations. Let us begin by finding the aver-
age current. Taking the expectation of the Heisenberg
representation form of Ĵ(0, t)

〈J(0, t)〉 =
∑

p

[v+(p, p)− v−(p, p)] |Bp|2

+2w(p, p)ReB∗
pApe

i(E+(p)−E−(p))t. (8)

The last term gives rise to a transient, and in the t→∞
limit we have the natural result

〈Ĵ(0, t→∞)〉 =
∑

p

[
dE+(p)
dp

− dE−(p)
dp

]
|Bp|2. (9)

Moving on to the current fluctuations, the expectation
for the connected correlation function

〈Ĵ(0, t)Ĵ(0, t′)〉c ≡ 〈Ĵ(0, t)Ĵ(0, t′)〉 − 〈Ĵ(0, t)〉〈Ĵ(0, t′)〉,

is straightforwardly obtained but rather lengthy. It is
useful to first consider the equilibrium case when Ap = 1,
Bp = 0. Then we have

〈Ĵ(0, t)Ĵ(0, 0)〉c =
∑
p,p′

w(p, p′)w(p′, p)e−i(E+(p)−E−(p′))t.

(10)
Note that this arises from off-diagonal part of the cur-
rent Eq. (4). For the Dirac case the integrals are readily
performed to give

〈Ĵ(0, t)Ĵ(0, 0)〉c =
u2

2π2

[
K1(−iut)2

+(K0(−iut) + πH0(ut))
2
]
,(11)
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where Kn(x) is a Bessel function and Hn(x) a Struve
function. At t→ 0 we have the behavior

〈Ĵ(0, t)Ĵ(0, 0)〉c → − 1
2π2(t− i0)2

.

In this limit the correlator matches that of the massless
system, which is fixed by the Schwinger commutators[

ĴL/R(x), ĴL/R(x′)
]

= ± i

2π
δ′(x− x′)[

ĴL/R(x), ĴR/L(x′)
]

= 0. (12)

As may be readily seen from Eq. (10), the noise spec-
trum contains only positive frequencies, indicating that
the system can only absorb energy at zero temperature.
Furthermore the spectrum is gapped at 2u, meaning that
there is no noise at zero frequency.

It is thus reasonable to drop the gapped contribu-
tions to the noise (we will justify this more rigorously
later). Additionally, we now focus on the particle-hole
symmetric case where E±(p) = ±Ep, and v+(p, p′) =
−v−(p, p′) ≡ v(p, p′), as in our two examples. Then the
current correlator out of equilibrium is

〈Ĵ(0, t)Ĵ(0, t′)〉c = 2
∑
p,p′

v(p, p′)v(p′, p)
[
e−i(Ep−Ep′)(t−t′)|Bp|2|Ap′ |2 + e−i(Ep−Ep′)(t+t′)B∗

pApBp′A
∗
p′

]
(13)

Notice that the noise correlator is non-stationary, since
the non-equilibrium state is not an eigenstate. It is still
possible to define a Fano factor as 〈Q2

T 〉c = F 〈QT 〉, where
QT is the current passed in time T . Then Eq. (9) and
Eq. (13) give (we use the property v(p,−p) = 0)

F =
2
∑

p |E′(p)||Ap|2|Bp|2∑
pE

′(p)|Bp|2
. (14)

This result closely resembles the formula for the shot
noise of a point contact. The key difference lies in
the factor of two, so that in the limit Bp → 0 we get
F = 2 rather than 1. The origin of this surprising super-
Poissonian behavior is the second term of Eq. (13), which
arises from the averages 〈ψ̂†+(p)ψ̂−(p)〉 = B∗

pAp. These
non-vanishing averages are the analog of Andreev reflec-
tion in our system, and reflect the coherent nature of the
Zener process

We now discuss the FCS for this problem. Two toy
models of ‘ideal’ detectors have been considered in the
literature20,21 – both give the generating function of the
FCS as

χ(λ, T ) =
〈
Tc exp

(
iλ

2

∫
c(T )

dt′sgnc(t
′)Ĵ(0, t′)

)〉
. (15)

Here T denotes the measurement time, and c(T ) is a
(Keldysh) time contour that passes from 0 to T and back
again. Tc is the operation of time ordering on this con-
tour, and sgnc is +1 on the forward branch, and −1 on
the backward branch. The expectation value is taken
over the current-carrying state of the system. It should
be noted that the measurement performed in Ref. 3 would
seem to have little in common with the idealized detec-
tion arrangements for which the above form of χ(λ, T )
was found. We hope to provide a detailed analysis of
this issue in a forthcoming publication: for the moment
we will work with Eq. (15) for want of something better.

We use Wick’s theorem to rewrite Eq. (15) in normal-

ordered form

χ(λ, T ) = χVac(λ, T )
〈

: exp
(
−iTr

[
GΛΨ̂ ⊗ Ψ̂†

])
:
〉

χVac(λ, T ) = exp
[
Tr ln G−1

]
, G = (11− iΛD)−1(16)

In the above we have introduced the doublet

Ψ̂p =
(
ψ̂+(p)
ψ̂−(p)

)
,

while Dp,p′(t, t′) ≡ TcΨ̂p(t)⊗ Ψ̂†
p′(t

′)− : Ψ̂p(t)⊗ Ψ̂†
p′(t

′) :
is the Feynman propagator

Dp,p′(t, t′) = δp,p′

(
θc(t, t′) 0

0 −θc(t′, t)

)
.

θc(t, t′) is 1 if t comes after t′ on the contour, and zero
otherwise. The matrix Λp,p′(t) is introduced so that

λ

2
sgnc(t)Ĵ(0, t) =

∑
p,p′

Ψ̂†
pΛp.p′(t)Ψ̂p′ .

That is, it contains the v±(p, p′) and w(p, p′) of Eq. (4).
The ‘Tr’ in Eq. (16) is a trace over the band, time, and
p indices.

In finding Eq. (16) we have factored off the part of the
generating function that exists in the ‘vacuum’. Recall
that we earlier showed that the quantum noise Eq. (10)
in the ground state has a gapped spectrum. We thus
do not expect it to contribute to the FCS at long times
T . Since Eq. (10) originated from the band off-diagonal
contribution to the current, we can drop these effects at
the outset by setting w(p, p′) = 0 in Λp,p′ .

Alternatively, we can perform a clean calculation in
the following way20. We pass to a set of equally spaced
states in energy space with energies ±En = ±u± 2πn/T
(assuming also that 2u is an integer multiple of 2π/T ).
In this basis the current operator takes the form
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J(0, t) =
∑

n,n′,b,b′

vbb′(n, n′)
|vbb(n, n)vb′b′(n′, n′)|1/2

[
ψ̂†+bnψ̂+b′n′e

−i(En−En′ )t + ψ̂−b′n′ ψ̂
†
−bne

i(En−En′ )t
]
, (17)

The ‘branch’ index b = −1, 1 is needed to account for p < 0 and p > 0 states with momenta b pn such that En = E(pn)
(see Fig. 1b.). In Eq. (17) vbb′(n, n′) = v(b pn, b

′ pn′). The advantage of this approach is that not only do the effects
of w(p, p′) disappear but χ(λ, T ) takes a diagonal form with χVac (λ, T ) = 1 and

χ(λ, T ) =
〈

: exp
(
T
∑
n,b

Ψ̂†
bn

(
eiλb − 1 0

0 1− eiλb

)
Ψ̂bn

)
:
〉
, (18)

Eq. (18) represents a general form for χ(λ, T ), ready for averaging over the state of the system. The state following
an applied impulse is ∏

n,b

[
Abn +Bbnψ̂

†
+bnψ̂−bn

]
|0〉.

(note that the assumption of particle-hole symmetry enters here in an essential way – pairing of particle and hole
states at fixed momentum translates to pairing at given n) This state has(

〈ψ̂†+bnψ̂+bn〉 〈ψ̂
†
+bnψ̂−bn〉

〈ψ̂†−bnψ̂+bn〉 〈ψ̂−bnψ̂
†
−bn〉

)
=

1
T

(
|Bbn|2 BbnA

∗
bn

AbnB
∗
bn −|Bbn|2

)
(19)

The average of the normal-ordered exponent in Eq. (18) can then be found

χ(λ, T ) =
∏
n,b

det
(
|Abn|2 + |Bbn|2eiλb BbnA

∗
bn

(
eiλb − 1

)
AbnB

∗
bn

(
1− eiλb

)
|Abn|2 + |Bbn|2eiλb

)
lnχ(λ, T ) =

∑
n,b

ln
[
|Abn|2 + |Bbn|2e2iλb

]
.

We used the normalization condition |Abn|2 + |Bbn|2 = 1.
To make things concrete, let’s consider the case of a con-
stant force Φ applied for time τ , with the resulting im-
pulse Φτ not creating particle-hole pairs too far away
from the zone boundary, so that the Dirac structure
Eq. (2) is a good approximation. As long as Φτ � u/c,
however, most of the resulting particle-hole excitations
are located on the linear part of the spectrum at p > 0,
so that we can neglect the crossing point and take the
amplitudes to be given by the Landau-Zener formula

|Bbn|2 =

{
0 b = −1

PLZ ≡ e−
πu2
cΦ b = 1,

giving the FCS

χ(λ, T ) =
[
(1− PLZ) + PLZe

2iλ
]cΦτT/2π

, (20)

and the Fano factor F = 2 (1− PLZ), in agreement with
Eq. (14). The result Eq. (20) corresponds to binomial
statistics of particle transport, with a probability PLZ of
transporting two charges (a particle passing in one direc-
tion and a hole in the other) per ‘attempt’, and a number

of attempts cΦτT/2π. Note that the unusual doubling is
a consequence of the coherent creation of particles and
holes: if the off-diagonal parts of Eq. (19) are set to zero,
the FCS is a product of binomial statistics for particles
and holes separately, with Fano factor ≤ 1. The classical
picture of Fig 1a) upon which our intuition was based
corresponds to this case.

A brief comment is in order concerning the case with-
out particle-hole symmetry. In general the second term
in Eq. (13) will give rise to a zero frequency contri-
bution to the noise from a pair of momenta p, p′ with
E+(p) + E−(p′) = 0. This contribution involves the
combination of amplitudes B∗

pApBp′A
∗
p′ , and is thus in

general sensitive to the phase (the ‘Stokes phase’). One
would expect a general decrease of the Fano factor for this
reason, though super-Poissonian behavior is still possible.

To conclude, we have investigated the counting statis-
tics of the Zener process, and discovered an unusual
super-Poissonian behavior. It would be interesting to
perform such calculations for more realistic models of in-
sulators, where particles and holes can interact, to see
how the results are modified.
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