
Dispersion relation and spectral function of an impurity in a one-dimensional quantum liquid

Austen Lamacraft∗
Department of Physics, University of Virginia, Charlottesville, VA 22904-4714 USA

(Dated: July 19, 2009)

We consider the motion of an impurity particle in a general one-dimensional quantum fluid at zero temper-
ature. The dispersion relation Ω(P ) of the impurity is strongly affected by interactions with the fluid as the
momentum approaches±π~n,±3π~n, . . ., where n is the density. This behavior is caused by singular±2π~n
scattering processes and can be understood by analogy to the Kondo effect, both at strong and weak coupling,
with the possibility of a quantum phase transition where Ω′(±πn) jumps to zero with increasing coupling. The
low energy singularities in the impurity spectral function can be understood on the same footing.

The study of systems in which one or a few distinguished
degrees of freedom are simultaneously coupled to a ‘bath’
consisting of an infinite number more finds applications in all
branches of physics. In condensed matter physics, such situa-
tions are often called ‘impurity’ problems, since the canonical
examples describe the dynamics of a defect in an otherwise
perfect crystal lattice, or a foreign atom in a pure fluid.

A natural distinction within the class of impurity problems
is between the situation typical of the solid state, in which
impurities are fixed and have infinite mass, and that found
more often in the study of quantum liquids such as super-
fluid 4He, where the impurity is mobile and has finite mass.
While the former has historically provided a richer source of
new concepts, including the related phenomena of the Kondo
effect [1], the X-ray edge problem [2, 3] and Anderson’s or-
thogonality catastrophe [4], the latter finds new applications
in the physics of ultracold atomic gases. Ref. [5] provides an
example of this new setting. A small fraction of atoms in a
Bose condensed gas were transferred into a different hyper-
fine state, forming a dilute system of impurities propagating
through the condensate. With the momentum and energy of
the impurities under independent control, a more sophisticated
version of the same experiment could measure the spectral
functions discussed later in this work.

Recent experimental advances mean that the study of mo-
bile impurities in low dimensional, strongly interacting atomic
gases has become a possibility [6]. The purpose of this pa-
per is to show that in one dimension such a system displays
remarkably rich behavior. The model that we will discuss ap-
plies equally well to solid state systems such as quantum wires
and carbon nanotubes in which the gas corresponds to a par-
tially filled sub-band and the impurities to carriers propagating
in an unfilled sub-band.

The problem to be considered can be motivated by the fol-
lowing simple calculation. Consider an impurity of mass M
moving through a Fermi gas consisting of particles of mass m
and density n. With an eye to applications in ultracold physics
the interaction between the gas and the impurity will be taken
to be Hint = u

∑
i δ(xi −X). We take u > 0: for attractive

interactions a bound state will form and we expect the prob-
lem is similar but with a ‘molecular’ impurity. Let us find how
the dispersion relation Ω(0)(P ) = P 2/2M of the impurity is
modified by this interaction. At first order in u the contribu-
tion Ω(1) = un is momentum independent, while the second

FIG. 1: Schematic dispersion relation of an impurity moving in
K > 1 Luttinger liquid. At weak coupling a cusp persists at
P = πn, but vanishes discontinuously at some critical coupling.
In the strong coupling limit the dispersion takes the simple form
Ω(P ) ∝ sin2 P/2n. Ω(P ) is the ground state energy of the sys-
tem at given P : the singular form of the impurity spectral function
near this threshold is indicated in the inset. The dashed curve illus-
trates the ground state in the absence of an impurity for reference.

order contribution is (we set ~ = 1)
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Near the Fermi points ±pF = ±πn we have the singular be-
havior
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so that the derivative Ω′(P ) has a logarithmic singularity at
the Fermi points. The case M = m is special, and we have

Ω(2)(P ) = −mu2
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]
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In both cases the contribution is negative. The origin of the
singular behavior in Eq. (1) as P → ±pF is the follow-
ing. There are intermediate states in the second order cal-
culation involving a soft particle hole pair with momentum
∼ 0, leading to a vanishing denominator. Additionally, when
P → ±pF , a vanishing denominator arises for an interme-
diate state in which the impurity is scattered to the opposite
Fermi point, accompanied by a particle hole pair of momen-
tum ∼ ±2pF . We will see that this is analogous to the con-
tribution of spin-flip processes at second order in the Kondo
problem and corresponds to identical singular behavior as a
function of magnetic field.

In the above calculation, the meaning of Ω(P ) is clear, be-
ing the energy of a state that goes over to the free impurity
with momentum P at zero coupling. How should we under-
stand Ω(P ) in the general case, without reference to pertur-
bation theory? A kinematic argument shows that the ground
state energy of the system with total momentum P may be
identified with the impurity dispersion as long as the group
velocity |Ω′(P )| < v, the speed of sound (equal to the Fermi
velocity vF in this case), otherwise a lower energy state will
be one with real particle-hole or phonon excitations. Since
Ω(0)′(pF ) = mvF /M the above calculation is then meaning-
ful for M ≥ m. By defining Ω(P ) as the ground state energy
at given P we obtain a periodic function Ω(P+2πn) = Ω(P ).

The remainder of this paper is concerned with a general
1D quantum fluid characterized by a Luttinger parameter K,
equal to πn/mv for a Galilean invariant system [7]. The main
findings for Ω(P ) are then (see Fig. 1):

1. For K ≤ 1, including the case of free fermions with
K = 1, Ω′(±πn) = 0 for arbitrarily weak coupling
between the impurity and gas.

2. For K > 1 (e.g. a Bose gas), Ω′(±πn) is finite for
weak coupling, but jumps discontinuously to zero at
some critical coupling.

3. At strong coupling, when the impurity is almost opaque
to the gas particles, the dispersion takes the simple form
Ω(P ) − Ω(0) ∝ sin2 P/2n, with the bandwidth being
set by the amplitude for tunneling through the impurity.

Note that the impurity propagates ballistically only at zero
temperature, with a finite mobility diverging as ∝ T−4 at low
temperatures [8–10].

In addition we will find the form of the spectral function
A+(P, ω) for the addition of the impurity at momentum P .
Since Ω(P ) is the ground state of the system with total mo-
mentum P , this energy represents a threshold below which the
spectral function vanishes. Just above the threshold the spec-
tral function has the form of a power law with momentum-
dependent exponent

A+(P, ω) ∝ θ(ω − Ω(P )) [ω − Ω(P )]α(P )−1
. (3)

In general the calculation of the exponent α(P ) is a difficult
task. In the limit of an almost opaque impurity we obtain

α(P ) = K
2 [

(
Uφ

πv

)2

+
(

P
πn

)2
], where Uφ is a non-universal

parameter, equal to πv in the Fermi or Tonks gas. Finally,
we confirm those results that apply to the K = 1 case for
the Fermi gas with M = m, which is a particularly simple
integrable system.

We begin be developing the theory at weak coupling. As in-
dicated above, it is convenient to describe the low energy de-
grees of freedom of the gas as a Luttinger liquid with Hamil-
tonian [7]

Hgas =
v

2π

∫
dx

[
K (∂xθ)2 +

1
K

(∂xφ)2
]

(4)

with [φ(x), ∂yθ(y)] = iπδ(x − y). The total Hamilto-
nian of the system is then Himp + Hgas + uρ(X), where
Himp = P 2/2M , [P,X] = −i and ρ(x) is the density of
the gas. In the Luttinger liquid picture this has the form
ρ(x) = 1

π ∂xφ(x)
∑∞

m=−∞ e2miφ(x).
It is convenient to make a transformation to a frame moving

with the impurity, which can be accomplished by the unitary
transformation UX = eiXPgas , where Pgas is the momentum
of the gas. Then H = Hgas + (P − Pgas)2/2M + uρ(0).
With X now absent from the Hamiltonian P is conserved and
corresponds to the total momentum of the system. Neglecting
irrelevant operators arising from higher order harmonics of the
density, the low energy Hamiltonian then takes the form

H =
v

2π

∫
dx

[
K

(
∂xθ̃

)2

+
1
K

(
∂xφ̃

)2
]

+
1

2M

(
P − πnJ − 1

π

∫
dx ∂xφ̃∂xθ̃

)2

+
Uφ

π
∂xφ̃(0) + 2nU2πn cos

[
2

(
φ0 + φ̃(0)

)]
. (5)

In writing Eq. (5) we have passed from the microscopic in-
teraction strength u to effective couplings Uφ and U2πn, de-
scribing forward scattering and backward scattering from the
impurity respectively. For the δ-function interaction we have
Uφ = U2πn = u at lowest order in u. We have also separated
the zero mode contributions in φ(x) and θ(x).

φ(x) = φ0 +
πNx

L
+ φ̃(x)

θ(x) = θ0 +
πJx

L
+ θ̃(x). (6)

with [φ0, J ] = [θ0, N ] = i. The backward scattering term
thus changes J by 2, corresponding to a ±2πn change in the
momentum of the gas. If πn [J − 1] < P < πn [J + 1]
for even integer J , the second term of Eq. (5), arising
from the kinetic energy of the impurity, favors the value
J = J . For P = πn (J + 1), states corresponding to
J = J ,J + 2 become degenerate in the absence of back-
ward scattering; away from this point they have a splitting
∆P,J ≡ 2πn

M [P − πn (J + 1)].
Before considering the structure of perturbation theory in

U2πn it is convenient to first remove the forward scattering
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terms by a unitary transformation ULUR with [11]

UL/R = exp

[
±i

√
KUφφ̃L/R(0)

2π (v ∓ PJ/M)

]
(7)

where PJ = P − πnJ and we introduced the chiral

modes φ̃L/R = φ̃/
√

K ±
√

Kθ̃, obeying the relations

[φ̃L/R(x), ∂x′ φ̃L/R(x′)] = ±2πiδss′δ(x − x′). Close to a
degeneracy point we retain only the values J = J ,J + 2,
so that Hamiltonian is conveniently written using the pseudo-
spin 1/2 variable σz = J − J − 1 so that PJ = −πnσz and

H =
1
4π

∫
dx

[
(v − πnσz/M)(∂xφ̃R)2 + (v + πnσz/M)(∂xφ̃L)2

]
− ∆̃P,J

2
σz + 2nU2πn

[
σ+ei(η[φ̃L(0)+φ̃R(0)]) + h.c.

]
(8)

where

η =
√

K

[
1− nMUφ

M2v2 − π2n2

]
, (9)

and ∆̃P,J indicates that the splitting is altered from its bare
value in a way that depends upon the short distance behavior
of the problem and not specified by the Luttinger Hamilto-
nian. The precise value is not important in what follows. We

have also dropped the term 1
2Mπ2

(∫
dx ∂xφ̃∂xθ̃

)2

in Eq. (5)
as it gives is an irrelevant operator that does not change our
conclusions.

Ω(P ) for P ∼ πn(J +1) is just the ground state energy of
Eq. (8) for ∆̃P,J ∼ 0. In particular, the presence of a cusp in
Ω(P ) corresponds to a jump in the expectation value 〈σz〉 ∝
Ω′(P ) as P passes πn(J +1), as occurs for U2πn = 0. Let us
discuss the behavior of the system as a function of U2πn and
η, before returning to our original parameters.

A cusp is preserved for small U2πn if the backward scatter-
ing term is irrelevant, i.e. for η2 > 1. To understand what
happens for larger U2πn, or for η2 < 1, we observe that an
expansion of the ground state energy of Eq. (8) U2πn yields
the Anderson-Yuval expansion [12] of the Kondo problem in
a magnetic field proportional to ∆̃P,J [23]. For η2 < 1 back-
ward scattering is relevant and the ground state corresponds
to the antiferromagnetic Kondo problem i.e. a singlet with
〈σz〉 = 0 and a finite impurity susceptibility, correspond-
ing to Ω′(πn(J + 1)) = 0, Ω′′(πn(J + 1)) < 0. For
η2 > 1, 〈σz〉 jumps discontinously to zero from the univer-
sal value η−1 as u increases past some critical value [13] and
the Kondo ground state switches from ferromagnetic to anti-
ferromagnetic.

In terms of our original parameters, this means that for
K < 1, Ω′(πn(J + 1)) = 0 always, while for K > 1 a
transition occurs with Ω′(πn(J + 1)) jumping to zero as u
is increased. The determination of the critical value of u is a
difficult problem that we do not address here. The divergence
of Eq. (9) as M → πn/v is to be expected, as in this limit
the bare group velocity at momentum ±πn equals the sound
velocity. This limitation does not exist for the strong coupling
limit where the dispersion is almost flat, as we will now show.

As u → ∞ the impurity presents a hard wall to the parti-
cles of the gas. If the impurity’s mass were infinite, this would
correspond to the boundary conditions φ(0±) = ∓KUφ

2v The
equations of motion θ̇ = v∂xφ, φ̇ = v∂xθ then show that ∂xθ
vanishes as the origin is approached from either side, corre-
sponding to vanishing current, while θ(x) is discontinuous at
the origin: the phase difference can fluctuate wildly as the gas
is cut in two. The value to which φ is pinned is determined
by the magnitude of the forward scattering terms in Eq. (5) in
the u →∞ limit and is non-universal. In the simple case of a
free Fermi gas or Tonks gas (K = 1) we have Uφ = vπ.

In order to examine the effect of the impurity kinetic energy,
we write the total momentum of the gas as

Pgas =
1
π

∫
|x|>ε

dx ∂xθ∂xφ = −nθ(x)|0+
0−

+
1
π

∫
|x|>ε

dx ∂xθ∂xφ̃

The origin is excluded as there is a break in the fluid here.
The second term will be unimportant at low energies, so that
we can take the impurity term in the Hamiltonian to be

Himp =
1

2M

(
P + nθ(x)|0+

0−

)2

.

The overall Hamiltonian Hgas + Himp is quadratic,
but without discussing the solution explicitly we note
〈θ(x)|0+

0−
〉Hgas+Himp = −P/n with fluctuations about this

value vanishing at energies . n2/M due to the pinning ef-
fect of Himp. Note that in this limit the ground state energy
has no dependence on P , i.e. the impurity dispersion is flat.

Turning now to the case of small but finite transparency,
the term in Hamiltonian allowing tunneling of particles of
the gas through the impurity is the Josephson-like term
Ht = −2t cos[θ(0+) − θ(0−)]. The first order correc-
tion to the energy is then just the expectation value 〈Ht〉 =
−2t〈cos[θ(0+)−θ(0−)]〉 ∼ −2t (m/M)1/K cos P/n, so that
the dispersion has the form advertised earlier.

We next discuss the behavior of the spectral function.
The spectral function A+(P, ω) is the Fourier transform of
〈0|ΨP (t)Ψ†

P (0)|0〉, where the operator Ψ†
P creates an impu-

rity with momentum P , and |0〉 denotes the P = 0 ground
state of the gas in the absence of the impurity. Let us first
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consider the strong coupling case. We have established that
the impurity kinetic energy Himp ensures that at energies
. n2/M the system is described by the simple boundary con-
ditions

θ|0+
0−

= −P/n

φ|0+
0−

= −KUφ

v
. (10)

These boundary condition can be imposed on fields that are
continuous at the origin by the unitary transformation

UP = exp
(

iP

πn
φ(0) +

iKUφ

πv
θ(0)

)
, (11)

so that we have

〈0|ΨP (t)Ψ†
P (0)|0〉 = θ(t)e−iΩ(P )t〈U†P (t)UP (0)〉.

Since 〈U†P (t)UP (0)〉 ∝ |t|−
K
2 [

“
Uφ
πv

”2
+( P

πn )2
], the spectral

function has the form Eq. (3) with α(P ) as given earlier. The
result agrees with Ref. [14], which treated the special case
M = m, K = 1 (see also Ref. [15]).

Finally, we illustrate this behavior for the case of free
fermions coupled to an impurity with M = m. This sys-
tem is integrable, being an extreme limit of the spin-1/2 Fermi
gas [16–18]. As shown in Ref. [19], an eigenstate of a sys-
tem of N fermions can be written in the co-moving frame as a
Slater determinant of functions ϕj(x) j = 1, · · ·N satisfying
ϕj(0) = ϕj(L) and ϕ′j(0) − ϕ′j(L) = muϕj(0) (the latter
involving the reduced mass m/2, different from a static scat-
terer). The ϕj(x) are expanded in terms of the N + 1 plane
wave states: ϕj(x) =

∑N
t=0 at

je
iktx, where the momenta sat-

isfy kjL = 2πnj − 2δ(kj) with integers nj and phase shift

δ(k) = −π

2
sgn(k) + arctan

(
2(k − Λ)

mu

)
.

The lab frame energy and momentum are E = 1
2m

∑N
j=0 k2

j ,

the P =
∑N

j=0 kj , so that the spectral parameter Λ gives the
former as an implicit function of the latter. In the limit L →
∞ we find E(Λ) = p3

F L/(6πm) + Ω(Λ) with

Ω(Λ) =
p2

F

2m
+

∫ pF

−pF

dk

2π

4mu

(mu)2 + 4(k − Λ)2

[
k2

2m
− p2

F

2m

]
P (Λ) = −2

∫ pF

−pF

dk

2π
arctan

(
2(k − Λ)

mu

)
(12)

We find the following i) Eq. (2) holds for u → 0, ii) Ω(P ) =
p2

F

2m − 4p3
F

3πm2u cos2 (πP/2pF ) for u → ∞ or pF → 0, and

iii) Ω(P ) → p2
F

2m − 1
3

pF π(pF−|P |)2
m2u as P → ±pF . Thus

Ω′(±pF ) = 0 for arbitrary u. The fact that Ω(±pF ) =
p2

F /2m for all u is a consequence of SU(2) symmetry.
The extremely simple form of the eigenstates allows us to

extract the behavior of the spectral function easily. Indeed
it is possible to choose the ϕj(x) so that they approach plane

0 0.2 0.4 0.6 0.8 1
P / π n

0

0.1

0.2

0.3

0.4

0.5

Ω
 (P

) 
m

 / 
p F

2

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

α(
P

)

FIG. 2: Dispersion relation (top) and spectral function exponent
(bottom) for the exactly soluble limit of an impurity of mass
M = m moving in a Fermi gas, corresponding to Luttinger
parameter K = 1. Results are given for γ ≡ mu/~2n =
0.01(◦), 0.2(�), 0.5(4), 1(3), and 2(?). The dashed curve gives
the exponent α(P ) = 1

2
[1 +

`
P
πn

´2
] valid in the γ →∞ limit.

wave states with forward scattering phases δ(k) in the L →∞
limit [19]. The form of the spectral function exponent there-
fore coincides with the classic result for the deep hole cor-
relation function in the X-ray edge problem [3]: α(P ) =(
δ(pF )2 + δ(−pF )2

)
/π2. In the u → ∞ limit one finds

δ(±pF ) = πP
2pF

∓ π
2 and thus α(P ) = 1

2 [1 +
(

P
πn

)2
] in agree-

ment with our general result. The form of Ω(P ) and α(P )
are shown in Fig. 2 for various coupling strengths. The per-
sistence of edge singularities for a massive impurity in one
dimension was noted some time ago for P = 0 [20, 21].

In summary, we have shown that the motion of an impu-
rity in a one dimensional quantum gas has some interesting
features that have their origin in singular backward scatter-
ing processes at particular momenta. This system has been
recently realized in an ultracold atomic gas [22].
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