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We show that exact time dependent single particle Green function in the Imambekov–Glazman theory of
nonlinear Luttinger liquids can be written, for any value of the Luttinger parameter, in terms of a particular
solution of the Painlevé IV equation. Our expression for the Green function has a form analogous to the cele-
brated Tracy–Widom result connecting the Airy kernel with Painlevé II. The asymptotic power law of the exact
solution as a function of a single scaling variable x/

√
t agrees with the mobile impurity results. The full shape

of the Green function in the thermodynamic limit is recovered with arbitrary precision via a simple numerical
integration of a nonlinear ODE.

Introduction. The theory of Luttinger liquids has been ex-
tremely successful in providing an effective microscopic de-
scription of low energy equilibrium properties of one dimen-
sional quantum systems [1–3]. Its approximation of the free
fermion dispersion with a linear one leads to a quadratic the-
ory in terms of bosonic quasiparticles, making the calcula-
tion of correlation functions a textbook exercise. However,
this same approximation produces a catastrophic failure of
the theory when one is concerned with time dependent prop-
erties, the simplest example of which is the single particle
Green function (GF) [4, 5]. This situation is clearest in chi-
ral systems, such as quantum Hall edge states, where the lin-
earization of dispersion results in a spacetime dependence of
two–point correlators solely on x − vF t, and concomitant δ–
function behaviour of the spectral function. To cure this sick-
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Figure 1. Eigenstates of local, low energy, 1D Hamiltonians are in
correspondence with the free fermion eigenstates. The chiral elec-
tron spectral functionDη(s) has a nonvanishing support between the
particle εp(k), and the hole εh(k) thresholds, indicated schematically
in greyscale. Luttinger liquid theory, which assumes a linear disper-
sion, predicts a δ–peak for the spectral function at ω = vF k, where
vF is the Fermi velocity.

ness, a phenomenological “nonlinear Luttinger liquid” theory
has been developed, beginning with Ref. [6] and reviewed in
Ref. [4]. A “mobile impurity” couples to the Luttinger liquid
and resolves the degeneracy of the Luttinger spectrum to cap-
ture the correct analytical structure of dynamical correlation
functions. Combined with exact solutions the mobile impu-
rity model can give exact power law exponents of correlation

functions at threshold [7, 8].
At low energies Ref. [5] identified a scaling regime where

the spectral function is determined by a one–parameter family
of functions Dη(s), where η is fixed by the Luttinger param-
eter K, and the scaling variable s = (ω − vF k)/(k2/2m).
Ref. [5] were able to find the exact power law behaviour for
Dη(s) at the thresholds shown in Fig. 1. However, away from
the thresholds, the exact shape of the universal functionDη(s)
cannot be calculated within the mobile impurity model, and
one has to resort to other methods e.g. sophisticated Bethe
ansatz calculations, or evaluation of fermionic determinants
used in the pioneering Imambekov–Glazman paper [5]. Both
of these approaches have to work in a truncated Hilbert space.
More importantly because they are based on numerical cal-
culations they naturally fail to reveal the analytic structure of
the universal function, which as we show below is described
by a fourth Painlevé transcendent. The latter equation is one
of the celebrated nonlinear equations of mathematical physics
and has applications in many different contexts including ran-
dom matrix theory, symmetry reductions of integrable partial
differential equations, and quantum gravity [9].

In this Letter we show that the Fredholm determinant repre-
sentation for the Green functionG(x, t) can be written exactly
in the thermodynamic limit for any (x, t) in terms of a scaling
function g(σ) with σ = x

√
m/t. Here, the function g(σ) is

related to the fourth Painlevé transcendent, and x is the co-
moving coordinate with the speed of sound to account for any
linear dispersion. We solve the nonlinear ODE numerically
specifying Luttinger liquid initial conditions at t = 0, which
gives the Green function shown in Fig. 2.

Definitions. There is strong evidence [5, 10, 11] that low en-
ergy eigenstates of generic chiral 1D models with short range
interactions can be put in correspondence with those of free
fermions with quadratic dispersion generated by the Hamilto-
nian

Ĥ =
∑
k

1

2m
(k + kF )2 : ĉ†k ĉk :, (1)

see schematic picture in Fig. 1. Of course, this does not mean
that the correlators of physical operators are trivial. It is also
worth noting that there are known cases when a quadratic term
is forbidden by a symmetry, e.g. a spin– 1

2 chain in zero field
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Figure 2. Top row: real (blue) and imaginary (red) parts of the scaling function g(σ) = (t/m)η
2/2G(x, t), obtained by solving numerically

the ODE, see Eqs. (34); (left column) free fermions η = 1, (central column) η = 1.2, (right column) η =
√
3 which corresponds to ν = 1/3

FQHE case. Bottom row: the logarithm of the scaling function log[g(σ)e−iσ
2/2] for the same values of η, compared for η = 1.2, η =

√
3

with the asymptotic power law dependence Eq. (26) (orange line). The power law follows from the mobile impurity asymptotics [5] we give
in Eqn. (26) for G(x, t), which imply for σ =

√
mv2t� 0, g(σ) ∼ ση

2−1−2(η−1)2eiσ
2/2, and for σ � 0, g(σ) follows the Luttinger power.

[12], where the dispersion starts with a cubic term. Here we
focus on the case of quadratic dispersion. Defining bosonic
fields

ϕ̂†(x) = −
∑
q>0

1
√
nq
b̂†qe
−iqx−qa/2, q =

2π

L
nq, nq ∈ Z (2)

where L is the length of the system, a is the large momentum
cutoff, and b̂†q is the boson creation operator given in terms of
fermions as

b̂†q =
i
√
nq

∞∑
k=−∞

ĉ†k+q ĉk, (3)

one can write the time dependent single particle GF as

G(x, t) = (2π/L)η
2

〈e−iηϕ(x,t)eiηϕ
†(0,0)〉. (4)

Here the average is taken with respect to a bosonic vacuum,
and η is related to Luttinger parameter by η = (K1/2 +
K−1/2)/2, or for the FQHE edge states at filling fraction ν is
given by η = 1/

√
ν. Using Lehmann representation in terms

of particle–hole states the Green function can be written in the
following form [13]

G(x, t) = (2π/L)η
2
∞∑
n=0

∑
pi,qj

det [L(pi, qj |x, t)]ni,j=1 . (5)

Here, the kernel L(p, q|x, t), defined in Eqs. (6), (7), is the
matrix element of a vertex operator between the filled Fermi
sea, and a single particle–hole pair with quantized momenta
pi, qj correspondingly. From Eq. (5) it is possible to find ex-
act power law singularities in the spectral function [14, 15].

However, an explicit evaluation of the determinant has not
been addressed so far.

Riemann–Hilbert problem. In the thermodynamic limit the
kernel assumes the “integrable” form [16, 17]

L(p, q|x, t) =
f(p|x, t) · g(q|x, t)

p− q
, (6)

where the dot product acts on the r, s indices in fr(k), gs(k),

f1(k) = g2(k) = θ(k)
(kx)η

Γ(η)
e
− i

2

[
k2

2m t−k(x+ia)
]
,

f2(k) = g1(k) = θ(−k)
(|k|x)−η

Γ(1− η)
e

i
2

[
k2

2m t−k(x+ia)
]
.

(7)

The vanishing of L(k1, k2) when k1, k2 are of the same sign
ensures that only states with equal numbers of particles and
holes contribute. The kernel Eq. (6) at t = 0 and x imaginary
describes a probability distribution on the Young diagrams,
which are in a one to one correspondence with many body
states λ, known as the mixed z–measure [18].

By definition the right hand side of the GF is a Fredholm
determinant G(x, t) = (2π/L)η

2

det[1 +L(x, t)], and can be
studied by Riemann–Hilbert methods [17]. First, we take a
log derivative of GF with respect to x,

∂x logG(x, t) = Tr (1 + L)−1∂xL. (8)

Now we exploit the integrable form of the kernel (6). Firstly,
direct evaluation of ∂xL(k1, k2|x, t) shows the right hand side
is i

2 tr(1 + L)−1f(k1|x, t)σ3g(k2|x, t). Importantly, the re-
solvent K = L(1 + L)−1 is also integrable [16, 19],

K(k1, k2) =
F (k1) ·G(k2)

k1 − k2
(9)
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where F = (1 + L)−1f , GT = gT (1 + L)−1. Then we can
express the log derivative of the Green function as a trace over
both the momentum k and the 2× 2 matrix structure of fi, gj

∂

∂x

∣∣∣∣
t

log det [1 + L(x, t)] =
i

2
TrFi(k)σij3 gj(k). (10)

The object on the r.h.s. can be found by solving a Riemann–
Hilbert problem (RHP). It is first convenient to rescale mo-
menta λ = k

√
t/m so that f, g are functions of λ and σ. We

will only discuss the retarded Green function so that t ≥ 0.
To build the RHP we define the 2× 2 matrix–valued function
m(z) in terms of known g and unknown F ,

m(z) = 1−
∫ ∞
−∞

dλ
F (λ)gT (λ)

z − λ
, (11)

which is analytic in the complex plane except for the real axis.
Plemelj formula and the relation F = (1 + L)−1f = mf
shows that the limiting values above and below the real axis
satisfy the jump condition

m+(λ) = m−(λ)
[
1 + 2πif(λ)gT (λ)

]
. (12)

At large z, m ∼ 1 +m(1)/z + . . . approaches the identity as

m(z) ∼ 1− z−1

∫ ∞
−∞

dλ F (λ)gT (λ) +O(z−2). (13)

The jump equation Eqn. (12) and behaviour m(z) → 1 at in-
finity fix m(z) uniquely in terms of the known functions f, g.
What’s more, if we can solve this RHP for m(z), comparing
Eqns. (13), (10), we need only extract its residue at infinity to
express the log derivative of G(x, t) as a 2× 2 trace

∂

∂σ

∣∣∣∣
t

log det [1 + L(x, t)] = − i
2

tr[m(1)σ3]. (14)

Explicit solutions to RHPs are rare. For the equal time case,
the solution is known explicitly in terms of Whittaker func-
tions [20] from studies of z–measures on Young diagrams —
see also the supplementary material. However, by Eqn. (14),
the task of finding G(x, t) does not require a full solution of
the RHP, but only its residue m(1). The strategy is to derive
a Lax equation, which lead to consistency conditions for ma-
trix elements of m(1). The consistency conditions are given
by a system of two second order coupled nonlinear equations.
Then we use the first integral to show that this system is equiv-
alent to Painlevé IV. The initial conditions for this equation
are obtained from asymptotic data as σ → +i∞, which cor-
responds to GF at t = 0.

The connection we find between the Fredholm determinant
and Painlevé IV is analogous to the Tracy–Widom result in
random matrix theory. The Fredholm determinant of the Her-
mite kernel, restricted to a finite interval (0, s), describes the
distribution function of the largest eigenvalue in the N × N
Gaussian Unitary Ensemble. Its second log derivative satisfies
Painlevé IV and in the edge scaling limit reduces to Painlevé

II [19]. The main difference between the two comes from ini-
tial conditions. This is rather fortunate because in our case the
numerical calculation does not require considerable efforts,
as opposed to the Tracy–Widom problem where the required
Hastings–McLeod solution is inherently unstable [21, 22].
Below we outline the connection of the Fredholm determi-
nant with the fourth Painlevé transcendent. For details see the
supplementary material.

Lax equation. The matrix Ψ(λ, σ) ≡ m(λ, σ)e−Θσ3/2,
where Θ = iλ2/2− iσλ− 2η log(λσ), satisfies a RHP with a
piecewise constant jump matrix. By differentiating the jump
equation for Ψ we find that ∂λΨ · Ψ−1 has a simple pole in
λ at the origin, and ∂σΨ · Ψ−1 is an entire function of λ. On
the other hand we can expand m = 1 + m(1)(σ)/λ + . . . to
calculate directly ∂Ψ · Ψ−1. Combined with our knowledge
of the analyticity of Ψ we can terminate the expansions to find
expressions for ∂σΨ·Ψ−1 and ∂λΨ·Ψ−1 explicitly in terms of
m(1)(σ) and λ. The matrix m(1) contains the derivative of the
Green function on its diagonal by Eqn. (14). Since detm = 1,
m(1)(σ) is traceless and we parameterize it

m(1)(σ) =

(
i∂σ logG(x, t) σ2ηeiσ

2/2ζ̄(σ)

σ−2ηe−iσ
2/2ζ(σ) −i∂σ logG(x, t)

)
. (15)

The absence of a pole at λ = 0 in ∂σΨ ·Ψ−1 implies the key
relation

∂2

∂σ2
logG(x, t) = −ζ̄ζ. (16)

It is then straightforward but tedious to cross differentiate
∂σΨ · Ψ−1, ∂λΨ · Ψ−1 and show that ζ, ζ̄ satisfy nonlinear
Schrödinger type equations

0 = −ζ̄ ′′ − iσζ̄ ′ + 2iηζ̄ + 2ζ̄ζζ̄,

0 = −ζ ′′ + iσζ ′ + 2iηζ + 2ζζ̄ζ.
(17)

The two equations are related by complex conjugation and
sending η → −η, and we emphasize that ζ̄ 6= ζ∗. Next, we
shall see how to find a first integral of this pair of equations
and show that ζ−1∂ζ and ζ̄−1∂ζ̄ satisfy Painlevé IV.

First integral. We have the first integral of the NLSEs

ζ ′ζ̄ ′ +
(
η − iζ̄ζ

)2
= 0. (18)

Differentiating the left hand side and using Eqs. (17) shows
that this quantity is indeed invariant under the time evolution,
and comparison with the equal time result, see Eqn. (32) and
Ref. [20], fixes it be zero at all times.

Painlevé IV. The system Eqs. (17) and their first integral,
Eqn. (18), reduces to PIV for ϕ ≡ ζ−1∂σζ. Subsitute ζ̄ζ =
1
2ϕ
′ + 1

2ϕ
2 − i

2σϕ− iη from Eqs. (17) into the Eq. (18). The
result is a special case of the PIV [23] equation for ϕ ≡ ζ−1ζσ

ϕ′′

ϕ
=

1

2

(
ϕ′

ϕ

)2

+
3

2
ϕ2 − 2iσϕ− 1

2
σ2 − i[2η − 1]. (19)

Similarly ζ̄−1∂ζ̄ satisfies the conjugated equation with η →
−η. Painlevé IV can be brought to the more intuitive form



4

of a nonlinear harmonic oscillator by putting ρ = e−iπ/4σ,
ζ−1 dζ

dρ = 2u2(ρ), so that

d2u

dρ2
= 3u5 + 2ρu3 +

(
1

4
ρ2 + η − 1

2

)
u. (20)

Boundary conditions and final result. To find the Green func-
tionG(x, t) we must twice integrate the “amplitude” ζ̄ζ of the
equations (17). We fix the boundary conditions for the NLSEs
by demanding that G(x, t) → G(x, 0) at short times. Since
we work in the similarity variable σ = x

√
m/t we have to

identify the region in the complex plane where large σ corre-
sponds to the short time limit. To warm up, consider first the
free fermion problem, where the Green function

G(x, t)

G(x, 0)
= −iσ

∫ ∞
0

dλ e−i[λ
2/2−λσ]. (21)

When σ is large and approaches positive real axis from above,
the integral is dominated by the saddle point at λ = σ

G(x, t)

G(x, 0)
∼ −
√

2πeiπ/4σeiσ
2/2, (22)

where the oscillations reflect that on the supersonic side the
correlation function is dominated by particle excitations. For
σ = iχ large and imaginary, the integrand has already expo-
nentially decayed by the time the oscillations kick in, and the
integral is dominated by its behaviour at λ � 1. We may
approximate it by dropping the quadratic term and

G(x, t)

G(x, 0)
∼ χ

∫ ∞
0

dλ e−λχ = 1 (23)

recovering the equal time behaviour. Analogously when η 6=
1 and σ = iχ is large and imaginary oscillations in the Fred-
holm determinant may be neglected, and the Green function
approaches the equal time correlator. Using the asymptotic re-
sult for σ0 large and imaginary logG(σ0) ∼ −η2 log σ0 and
taking the limit σ0 → i∞ we arrive at the main result of this
paper

G(x, t)

G(x, 0)
= exp

(
−
∫ σ

i∞
dσ′

[
(σ − σ′)ζ̄ζ(σ′)− η2

σ′

]
+ η2

)
.

(24)

Here ζ̄, ζ solve the NLSEs (17), and their log derivatives sat-
isfy Painlevé IV. The asymptotic behaviour for large imagi-
nary σ is given by the linear Luttinger problem, where the off
diagonal elements of m(1) in Eqn. (15) behave as powers (see
Eqn. (33)). Owing to Gaussian factors in our parameterization
of m(1), the asymptotic behaviour for the Painlevé IV solu-
tions is ϕ = ζ−1∂ζ ∼ iσ, ϕ̄ = ζ̄−1∂ζ̄ ∼ −iσ. As far as we
are aware this solution has not been studied (see Refs [24, 25]
for a review of Painlevé IV). The solutions obtained by inte-
gration of an equivalent set of first order equations, Eqns. (34),
for the free fermion η = 1, η = 1.2, and η =

√
3 correspond-

ing to the ν = 1/3 Laughlin state, are plotted in Fig. 2.

Mobile Impurity Asymptotics. For the Green function con-
sidered here the singularities in ω, k space from Ref. [5] are
exact. The retarded Green function studied here is related to
the Imambekov–Glazman Dη function by Fourier transform

G(x, t) = θ(t)

∫ ∞
0

dk kη
2−1eikx

∫ ∞
−∞

ds e−i
k2t
2m sDη(s).

(25)
At the thresholds of support s = ±1, Dη(s) has singularities
(1∓ s)[η∓1]2−1 [5]. The shift of the power η → η−1 from the
Luttinger liquid exponent follows from the exact degeneracy
when L → ∞ among all states with a single “hard” particle
that carries all the energy, and soft modes carrying no energy
but a finite momentum. Because one has to use e−iϕ of the
vertex operator e−iηϕ to create the hard particle, the exponent
of the Luttinger liquid is shifted by one. This can also be seen
in the form factors [14, 15]. These singularites in Dη(s) yield
asymptotics for the Green function at large x, t keeping the
ratio v = x/t fixed,

G(x, t) ∼

{(
i 1

2mv
2t
)−[η−1]2−1/2

ei
1
2mv

2t, x� 0,

(−i[x+ i0])
−η2

, x� 0.
(26)

In Fig. 2 we compare the supersonic asymptotic with a numer-
ical evaluation of the Green function obtained by solving the
differential equations.

To conclude, we have shown that the Green function in the
chiral nonlinear Luttinger liquid may be expressed in terms
of the fourth Painlevé transcendent in the similarity variable
x
√
m/t, dependent only upon the Luttinger parameter. The

solution may be found numerically, and the real space Green
function shows a power law and oscillations characteristic
of the edge singularity in the spectral function. The Green
function here for z = x + ib complex describes propaga-
tion of a Leviton |z〉 = e−iηϕ(z) |0〉 created by an applica-
tion of a Lorentzian voltage pulse of width b/vF along a 1D
wire [26], as has been studied in recent experiments [27]. It is
typically assumed in the literature that propagation of such
states is ballistic – see however Ref. [13]. An interesting
extension of this work, which is relevent to recent experi-
ments [27, 28], would be to identify clear signatures of the dis-
persion in the interference of two Leviton pulses. It is also in-
teresting to wonder whether other nonequilbrium correlation
functions may be tackled by this method. Nonlinear partial
differential equations are known [29, 30] for the correlation
function Tr

[
e−iηϕ(x,t)eiηϕ

†(x′,t′)ρ
]
, where ρ is the exponen-

tial of fermion bilinears but otherwise arbitrary. When ρ lacks
any length scale, as in the case here where it simply projects
onto the ground state, the PDEs must reduce to Painlevé IV.
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SUPPLEMENTARY MATERIAL

Lax Pair

The jump matrix v form is λ and σ dependent via the func-
tion Θ = iλ

2

2 − iσλ − 2η log λσ, where the logarithm has a
branch cut on the negative real axis, and

v =

{
1 + 2πi

Γ(η)2 e
−Θ(λ)σ+, λ > 0,

1 + 2πi
Γ(1−η)2 e

Θ−(λ)σ−, λ < 0.
(27)

The matrix Ψ = me−Θσ3/2 satisfies a Riemann–Hilbert prob-
lem with a piecewise constant jump matrix ṽ

ṽ =

{
1 + 2πi

Γ(η)2σ+, λ > 0,

e2πiησ3 + e2πiη 2πi
Γ(1−η)2σ−, λ < 0.

(28)

Taking determinants of the jump equation we find
(detm)

+
= (detm)

−, and combined with the limiting
value detm → 1 at infinity, Liouville’s theorem says that
detm = 1 everywhere. Consequently m−1 and Ψ−1 are
also analytic away from the real axis. From the defintion
Ψ = me−Θσ3/2 we find the σ derivative

∂σΨ ·Ψ−1 = mσm
−1 +

(
iz

2
+
η

σ

)
mσ3m

−1. (29)

Expandingm = 1+z−1m(1) +z−2m(2) + . . . and organizing
terms order by order in z−1, we find ∂σΨ ·Ψ−1 is

i

2
zσ3 +

(
η/σ −iσ2ηeiσ

2/2ζ̄

iσ−2ηe−iσ
2/2ζ −η/σ

)
+O(z−1). (30)

We have used the parameterization Eqn. (15) for m(1). How-
ever, independence of the jump matrix for Ψ, Eqns. (28), on σ
tells us that [∂σΨ ·Ψ−1]+ = [∂σΨ ·Ψ−1]− and is therefore an
entire function, so all terms in the big O must vanish. Vanish-
ing of the z−1 term tells us that dc /dσ = −iζ̄ζ, which will
now use in calculating ∂zΨ · Ψ−1. Proceeding as before we
find ∂zΨ ·Ψ−1 is

− i
2
zσ3 +

(
iσ/2 iσ2ηeiσ

2/2ζ̄

−iσ−2ηe−iσ
2/2ζ −iσ/2

)

+
1

z

(
η − iζ̄ζ σ2ηeiσ

2/2ζ̄σ
σ−2ηe−iσ

2/2ζσ −η + iζ̄ζ

)
.

(31)

Now there is a pole in ∂zΨ · Ψ−1 because the jump matrix
for Ψ is piecewise constant in z. This completes the deriva-
tion of the Lax pair, from which the nonlinear Schrödinger
equations (17) follow.
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http://dx.doi.org/ 10.1103/PhysRevLett.113.166403
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Exact solution to RHP for the Luttinger liquid

For completeness we give the exact solution to the RHP
for the equal time problem in imaginary space kx = iχ, first
found in Ref. [20]. The RHP solution in the upper and lower
half planes m±(χ) is expressed in terms of Whittaker func-
tions [23]

m±(χ) =

(
e−χ/2χ−η−

1
2Wη+ 1

2 ,0
(χ) η2eχ/2(e∓iπχ)η−

1
2W−η− 1

2 ,0
(e∓iπχ)

−e−χ/2χ−η− 1
2Wη− 1

2 ,0
(χ) eχ/2(e∓iπχ)η−

1
2W−η+ 1

2 ,0
(e∓iπχ)

)
. (32)

Using the analytic continuation formula for the Whittaker
functions, Ref. [23] Eqn. 13.14.13, one can check that the
jump equations (12) are satisfied for t = 0, and that m(χ) →
1 as χ→∞. The residue at infinity is

m(1) =

(
−η2 −η2

−1 η2

)
. (33)

Rescaling back to x, Eqn. (14) gives the Luttinger correlator
in the form ∂x logG = −η2/x. By Eqn. (31) the determinant
of the 1/z coefficient of ΨzΨ

−1 is the first integral Eqn. (18)
of the NLSEs, and direct calculation using the solution (32)
shows it vanishes.

Numerical solution of differential equations

Numerically it is much quicker to solve a set of coupled
first order nonlinear equations rather than directly attack-
ing Painlevé IV. We make a gauge transform in the NLSEs
ζ = aeγ , ζ̄ = āe−γ , and choose γ such that ζσ = eγ(ζ̄ζ+iη),
ζ̄σ = e−γ(ζ̄ζ + iη) in order that the first integral, Eqn. (18),
is automatically satisfied. The NLSE becomes a relation be-
tween γ, a, ā, and requires γ′ = a−ā+iσ. Using this relation
to eliminate γ in the the expressions for ϕ, ϕ̄ we get the cou-

pled first order equations

a′ + iσa+ a2 − iη = 2āa,

ā′ − iσā+ ā2 − iη = 2āa,
(34)

that we found more convenient to solve than the Painlevé
equation in its form Eqn. (20). For σ large and imaginary a, ā
are small and nonoscillatory and we can look for series so-
lutions in 1/τ , which we use to obtain the initial data a(σ0),
ā(σ0). With the help of Mathematica we can pull out the co-
efficients of the asymptotic series, the first few terms of which
are

a(σ) ∼ −i η
σ

+ η
1− 3η

σ3
+ iη

3 + η(−11 + 18η)

σ5
,

ā(σ) ∼ i η
σ

+ η
1 + 3η

σ3
− iη 3 + η(11 + 18η)

σ5
.

(35)

We checked that the Green function obtained by solution of
Eqns. (34) agrees with the exact result for the free fermion,
Eqn. (21), when η = 1. For η = 1, 1.2, and

√
3 we plot the

numerical solution in Fig. 2. We take the integration contour
in Eqn. (24) to run from values around 75i, down to the origin,
and then along the real axis to the required value of σ. The plot
of log[e−iσ

2/2g(σ)] in Fig. 2 verifies both the power law and
oscillations.
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