
The Fine Structure of the Phonon in One Dimension from Quantum Hydrodynamics

Tom Price and Austen Lamacraft
TCM Group, Cavendish Laboratory, University of Cambridge,

J. J. Thomson Ave., Cambridge CB3 0HE, UK∗

(Dated: December 4, 2014)

We show that the resonant interactions between phonons in one dimension may be treated consis-
tently within Quantum Hydrodynamics by the introduction of phonon dispersion. In this way the
physics of a nonlinear Luttinger liquid may be described in terms of hydrodynamic (i.e. bosonized)
variables without the introduction of impurities at the outset, and gives a complementary view on
the mobile impurity model from the hydrodynamics.

We focus on the calculation of the dynamic structure factor for a model with quadratic dispersion,
which has the Benjamin–Ono equation of fluid dynamics as its equation of motion. We find singular
behavior in the vicinity of upper and lower energetic thresholds corresponding to phonon and soliton
branches of the classical theory, which may be benchmarked against known results for the Calogero–
Sutherland model.

One dimensional quantum fluids may be described
within a hydrodynamic description usually known as Lut-
tinger liquid theory [1]. This versatile framework has
been applied to 1D gases of bosons and fermions as well
as to spin chains and the chiral excitations at the edge of
Quantum Hall fluids [2–4]. At the heart of the technique
is the expression of all observables, as well as the Hamil-
tonian, in terms of bosonic collective variables describ-
ing the density and velocity, a procedure usually dubbed
‘bosonization’.

In recent years it has become clear that this ap-
proach suffers from serious shortcomings. Conventional
bosonization treats phonons as linear excitations, de-
scribed by a harmonic Hamiltonian, with no dispersion
i.e. ε(k) = c|k|, where c is the speed of sound. Naively,
one expects this to be a reasonable approximation as long
as the anharmonicities present in a real system can be
ignored. However, as we will make clear shortly, inter-
actions between dispersionless phonons are singular in
one dimension [10], and perturbation theory is inappli-
cable. As a result, a quantity as basic as the correct
lineshape for the phonon excitations – encoded in the
dynamic structure factor – appears beyond the reach of
the usual theory.

Notwithstanding these difficulties, a ‘nonlinear Lut-
tinger liquid’ phenomenology has emerged in recent
years, beginning with Ref. [5] and reviewed recently in
Ref. [6]. This theory describes the low energy physics
of the system in terms of a conventional Luttinger liq-
uid, together with a mobile impurity that resolves the
degeneracy of the spectrum responsible for the singular
interactions. The mobile impurity model emerges from
perturbation theory for weakly interacting fermions, and
is assumed to extend to arbitrary interactions by conti-
nuity. Since the impurity degree of freedom is neither
hydrodynamic nor microscopic, its origin in the hydro-
dynamic theory of phonons is unclear. Thus the funda-
mental conceptual question of how to describe the same
physics within a theory of interacting phonons remains
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FIG. 1. Dynamical structure factor S(q, ω) indicated by
greyscale between the phonon ε(q) and soliton (dashed)
branches E(q), with the power law behaviour of Eq. (5) as
ω approaches the threshold at given momentum p (lower in-
set). The upper inset shows a snapshot of the Lorentzian
profile V (x) of the soliton Eq. (4) in real space.

to be addressed [7].

In this Rapid Communication we provide a description
of nonlinear Luttinger liquid physics solely in terms of
Quantum Hydrodynamics [8], showing in particular how
the dynamic structure factor acquires ‘fine structure’ due
to the nonlinearity. Our analysis hinges in an essential
way on the inclusion of dispersive terms in the phonon
Hamiltonian, in addition to the nonlinearity, which give
rise at the classical level to two branches of excitations:
small amplitude phonons and solitons (see Fig. 1). We
show that the corresponding quantum theory yields pre-
dictions for the structure factor in agreement with the
phenomenological nonlinear Luttinger liquid theory.

To illustrate the difficulties inherent in theories of non-
dispersive phonons, consider the phonon Hamiltonian
H = H2+H3 with H2 =

∑
k>0 ε(k) a†kak, and the leading
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(cubic) nonlinearity with coupling g [9]

H3 =
g

2

1√
L

∑
k1=k2+k3
k1,k2,k3>0

√
k1k2k3

(
ak1

a†k2
a†k3

+ h.c.
)

Here [ap, a
†
q] = δp,q, L is the system size, and we consider

only right moving excitations with dispersion ε(k) = ck,
as it is interactions among phonons moving in the same
direction that are resonant. The cubic terms in H3 de-
scribe the disintegration of one phonon to two and the
merging of two to one. By virtue of momentum conser-
vation and the linearity of the phonon spectrum, H3 only
couples states of the same energy, and is therefore a de-
generate perturbation [10]. There is therefore no sense
in which H3 can be considered small. It is clear that this
is a feature of any interaction among linearly dispersing
phonons moving in the same direction.

The same problem can be understood from a real space
viewpoint by defining the usual chiral boson field

φ(x) = −
∑
k>0

i√
kL

(
ake

ikx − a†ke−ikx
)
,

with commutation relations [φ(x), φ(y)] = i
2 sgn(x − y),

in terms of which the phonon Hamiltonian takes the form

H =

∫ ∞
−∞

dx
[ c

2
φ2
x +

g

6
φ3
x

]
.

(We use the notation φx = ∂φ/∂x, φt = ∂φ/∂t, etc.).
Setting ~ = 1, the Heisenberg equations of motion are

φt = i[H,φ] = −cφx −
g

2
φ2
x.

Introducing v ≡ gφx gives

vt + cvx + vvx = 0.

The second term is removed by passing to the moving
coordinate x → x + ct, in terms of which v obeys the
inviscid Burgers equation

vt + vvx = 0. (1)

Classical solutions of Eq. (1) become multivalued when
regions of higher velocity v overtake slower regions. In
fluid dynamics, this pathology is remedied by the inclu-
sion of dispersion or dissipation, which gives rise to higher
gradient terms. At zero temperature there is of course
no dissipation, so we add dispersive terms to the phonon
energy. In the moving frame – so that the linear term is
absent – this now takes the form

ε(k) = −αk2 − βk3 + · · · . (2)

The quadratic term, whilst absent in a perturbative cal-
culation of the self-energy for particles with short-ranged

interactions, appears in the hydrodynamics of incom-
pressible fluid surfaces. The long-wavelength phonon
Hamiltonian becomes

H =

∫ ∞
−∞

dx

[
α

2
φxHφxx −

β

2
φ2
xx +

g

6
φ3
x

]
. (3)

Here H denotes the Hilbert transform

Hφ(x) =
1

π

∫ ∞
−∞

P
φ(y)

y − xdy,

where P indicates the Cauchy principal value. In the fol-
lowing we restrict ourselves to β = 0, though our methods
are applicable to the general case. The resulting Hamil-
tonian, which we denote HBO, appears as the bosonized
description of the Calogero–Sutherland (CS) model of
particles of mass m interacting with an inverse square

potential U(x − y) = λ(λ−1)
m(x−y)2 [16–18]. In this case the

coefficients are

g =

√
2πλ

m
, α =

λ− 1

2m
.

The equation of motion of the Hamiltonian Eq. (3) is

vt + vvx + αHvxx + βvxxx = 0.

For α = 0 we have the Korteweg–de Vries equation, while
the case β = 0 corresponds to the Benjamin–Ono (BO)
equation [11, 12]. Both equations are completely inte-
grable [13–15], though the intermediate case is not.

Classically, one of the most dramatic consequences of
dispersion is the existence of solitons. For the BO equa-
tion these have the particularly simple form v(x, t) =
V (x−vSt), parametrized by the soliton velocity vS which
has the same sign as α

V (x) =
4α2vS

v2
Sx

2 + α2
. (4)

Evaluating the energy and momentum

P =
∑
k>0

ka†kak =
1

2

∫
dxφ2

x

of the soliton gives the dispersion relation E(P ) =
(g2/8πα)P 2. Thus phonons and solitons have opposite
dispersion, and in fact correspond to the states of maxi-
mum and minimum energy at given momentum.

The calculation we now describe shows that the dy-
namical structure factor S(q, ω) of the chiral theory has
support between these two thresholds, with power-law
singularities in the vicinity of the edges, given for small
g/α by (see Fig. 1)

S(q, ω) ∝
{

[ω − ε(q)]−1+g2/8πα2

for ω & ε(q)

[E(q)− ω]
−1+8πα2/g2

for ω . E(q).
(5)
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We note that the existence of a hard upper threshold
is a consequence of the chirality of the hydrodynamic
theory, as may be seen from the matrix elements of the
Hamiltonian Eq. (3) at a given momentum taken on a
ring (so that there are a finite number of states). In the
case α > 0, one may verify that the singular behaviour
is unaffected by noting that we decouple the cross-chiral
interactions with a non-singular generator.

Eq. (5) is consistent with the known exact results for
the CS model [16, 19–22]. These earlier calculations rely
on the complex machinery of Jack symmetric polyno-
mials, which belies the simplicity of the result Eq. (5).
Though our calculations are performed in the limit where
dispersion dominates the nonlinearity, the form of the
result shows that this limit is nontrivial. This is be-
cause the nonlinearity is a marginal perturbation with
respect to the BO dispersion in the sense of the renor-
malization group, and therefore a resummation of loga-
rithmic divergences is expected. We note that if α = 0 in
Eq. (2), corresponding to the absence of long-range forces
in 1D, the nonlinearity always dominates the dispersion
at low wavevectors, and our approach cannot be applied
in this limit. Fermionization of the dispersionless phonon
Hamiltonian then shows that both exponents in Eq. (5)
are equal to zero [6, 23]. Our methods will however be
applicable as long as βq � g.

Phonon threshold. The dynamical structure fac-
tor is the Fourier transform of the phonon correlator
〈v(x, t)v(0, 0)〉

S(q, ω) ∝ q
∫ ∞
−∞
〈0|aq(t)a†q(0)|0〉 eiωtdt, (6)

where the overall normalization can be fixed by the f-sum
rule in a Galilean invariant system. If the phonons are
free, i.e. g = 0, we have

〈0|aq(t)a†q(0)|0〉 = e−iε(q)t, (7)

and S(q, ω) consists of a single δ-function centred at
ω = ε(q). Now when g/α is nonzero but small, we can ex-
pect that for energies and momenta close to the phonon
dispersion, the states contributing to S(q, ω) resemble
those of a single phonon. We thus seek a unitary trans-
formation of HBO → UHBOU

† to remove the coupling
between phonons at leading order. Writing U = eA in
terms of some antihermitian generator gives the condi-
tion

[A,H2] +H3 = 0,

with solution A =
∑
{ki>0}Ak1k2k3

(
a†k1

ak2
ak3
− h.c.

)
,

where

Ak1k2k3 =
g

2

√
1

L

√
k1k2k3

αk2
1 − αk2

2 − αk2
3

δk1,k2+k3 . (8)

In considering the effect of the above unitary transforma-
tion on a phonon of wavevector q, we note that the gen-
erator Eq. (8) diverges when one of k2 or k3 approaches
zero. This indicates that the phonon has singular in-
teractions with soft phonons that change its momentum
very little. Isolating the part of the generator involving
one phonon operator with momentum below some small
cutoff Λ, and the others far above gives

AΛ ∼
g

2α

∑
q�Λ

0<k<Λ

1√
kL

(
a†qaq−kak − h.c.

)
∼ i g

2α

∫
dxφ<(x)ρ>(x).

In the second line, φ<(x) indicates the part of the chiral

boson involving only k < Λ, and ρ>(x) = a†>(x)a>(x) is
the density of ‘hard’ phonons, where

a>(x) =
∑
k�Λ

ake
ikx.

Performing the unitary transformation generated by AΛ

on the hard phonons gives

a>(x)→ UΛa>(x)U†Λ = exp [−i(g/2α)φ<(x)] a>(x).
(9)

Treating the transformed variables and vacuum as free
gives the following approximation to the hard phonon
correlation function

〈a>(x, t)a†>(0, 0)〉 ∼ 〈a>(x, t)a†>(0, 0)〉H2

×
≡V(x,t)︷ ︸︸ ︷

〈exp [−i(g/2α)φ<(x, t)] exp [i(g/2α)φ<(0, 0)]〉H2
.

Together with Eq. (7) for the free phonon correlation
function this gives for Eq. (6)

S(q, ω) = f(q)
∑
q′

Ṽ(q − q′, ω − ε(q′)), (10)

where Ṽ(q, ω) is the Fourier transform of V(x, t)

V(x, t) ∝ 〈exp
[
−i(g/2α)φ+

<(x, t)
]

exp
[
i(g/2α)φ−<(0, 0)

]
〉H2

= exp

[
g2

4α2
[φ+
<(x, t), φ−<(0, 0)]

]
= exp

[
g2

8πα2

∫ Λ

1/L

dk

k
eikx+iαk2t

]
∼ |x|−g2/8πα2

, x2 � αt.

In the above we have split the chiral boson into positive
and negative wavevector parts φ(x) = φ+(x)+φ−(x), an-
alytic in the upper and lower half planes of x respectively.
Substituting into Eq. (10) yields the first of Eq. (5).

Let us describe the physical picture underlying this cal-
culation. The hard phonon maintains its identity during
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interaction with the soft excitations, so may be regarded
as a moving impurity. Eq. (9) shows that the creation
of a hard phonon is associated with a ‘shake up’ of the
soft phonon system, as in the orthogonality catastrophe
or Fermi edge singularity [24, 25], leading to power law
behavior in the vicinity of the phonon threshold. The
mobile impurity model of [6] emerges from perturbation
theory for dispersing phonons.

Soliton threshold. To understand the behaviour in the
vicinity of the soliton dispersion, we note that in the large
dispersion limit the soliton is heavy, (this corresponds to
the large repulsion limit of the CS model) which suggests
a semiclassical description. This is most conveniently
implemented within a coherent state functional integral
representation of the phonon correlator, which takes the
form [26]

q 〈0|aq(t)a†q(0)|0〉 ∝ q
∫
Dϕ exp (iS[ϕ])αq(t)ᾱq(0).

(11)
αq(t) is the analog of aq(t) for the c-number field ϕ(x, t).
The action S[ϕ] = SBO[ϕ] + SB[ϕ] consists of the BO
action SBO[ϕ], as well as a boundary term SB[ϕ] that
plays a vital role in the following.

SBO[ϕ] = −1

2

∫ t

0

dτ

∫
dx
[
ϕxϕτ + αϕxHϕxx +

g

3
ϕ3
x

]
SB [ϕ] =

1

2

∫
dx
[
ϕ−ϕ+

x |τ=0 + ϕ−ϕ+
x |τ=t

]
.

To implement the semiclassical approximation we con-
sider field configurations close to the soliton: ϕ(x, τ) =
Φ(x;X(τ), X̄(τ)) + ϕ̃(x, τ), where (c.f. Eq. (4))

Φ(x;X(τ), X̄(τ)) = −2iα

g
ln

(
x−X(τ)

x− X̄(τ)

)
,

with the collective coordinates X(τ), X̄(τ) assumed to
be close to a soliton trajectory vSτ ± iα/vS .

The semiclassical approximation to the correlator then
has the form (up to constant factors)∫

DXDX̄eiq[X(0)−X̄(t)]+iS[Φ]

∫
Dϕ̃ eiδSB[ϕ̃]+ i

2 δ
2S[ϕ̃],

(12)
where the factor eiq[X(0)−X̄(t)] originates from the Fourier
components of the soliton, and δSB[ϕ̃] arises from the
variation of the endpoints

δSB =

∫
dx
[
Φ+
x ϕ̃
−|τ=0 − Φ−x ϕ̃

+|τ=t

]
=

4πα

g

[
ϕ̃+(X(t), t)− ϕ̃−(X̄(0), 0)

]
. (13)

The simple poles of the Benjamin soliton lead to the sec-
ond line of Eq.(13), which is completely determined by
the soliton ‘charge’. Even for models without this luxury,

at long times any soliton will behave like a delta function
in the integrand.

The computation of the Gaussian integral in Eq. (12)
is facilitated by the use of a basis diagonalizing the
quadratic action δ2S[ϕ̃] [27], in terms of which we may
write

ϕ̃(x, τ) =

∫ ∞
0

dk

2π

[
η(k, τ)ψ+(k, y) + η̄(k, τ)ψ−(k, y)

]
(14)

where y = x− vSt, and

ψ+(k, y) =
y −X
y − X̄

[
1

i(k + vS/2α)(y −X)
− 1

]
eiky

(15)
Together with functions corresponding to variation of
X(τ) and X̄(τ), this basis is complete and orthonormal
[27]. Substitution into the Gaussian action in Eq. (12)
gives

δSB =
2α

g

∫ ∞
0

dk
e−kα/vS

1 + 2αk/vS
[η(k, t)− η̄(k, 0)]

δ2S =

∫ t

0

dτ

∫
kdk

π
η̄(k, τ) [i∂τ − ω(k)] η(k, τ)

+ i

∫
dk

2π
k [η̄(k, 0)η(k, 0) + η̄(k, t)η(k, t)]

(16)

where ω(k) = −vSk − αk2. Integrating over
{η(k, τ), η̄(k, τ)} is now straightforward and yields
a factor in the semiclassical correlator equal to
(vSt/lS)−8πα2/g2

at long times, where lS ≡ α/vS is the
size of the soliton.

It remains to perform the integral over the collective
coordinates {X(τ), X̄(τ}. The exponent q[X(0)−X̄(t)]+
S[Φ] in Eq. (12) is stationary when the collective coordi-
nates follow a soliton trajectory, and the variation at the
endpoints fixes vS = (g2/4πα)q and ES = (g2/8πα)q2.
The Gaussian path integral coincides with that repre-
senting the expectation of a free particle propagator in
an eigenstate of momentum q, and so simply yields a
factor e−iESt.

Combining these elements yields the final expression
for the semiclassical structure factor at long times

q 〈0|aq(t)a†q(0)|0〉 ∝
(
lS
vSt

)8πα2/g2

exp(−iESt). (17)

Fourier transformation with respect to time then yields
the second of Eq. (5).

In this calculation the soliton edge singularity arises
from the linear coupling in δSB between the soliton and
the ‘phonon’ modes parameterized by the η-variables.
The mechanism is then nearly identical to that giving
rise to the phonon singularity in our earlier calculation,
albeit with inverse coupling, and illustrates the duality
between the phonon and soliton pictures. Following the
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derivation in Ref. [22] of the singularities in the CS struc-
ture factor, the author showed that the mobile impurity
phenomenology reproduces the exact result, which agrees
with our expression in the limit of strong dispersion. A
similar but more heuristic calculation of the absorption
threshold due to the creation of dark solitons in a repul-
sive 1D Bose gas appeared in Ref. [28].

In summary, we have shown that, contrary to the pre-
vailing wisdom, nonlinear Quantum Hydrodynamics in
one dimension is a tractable quantum field theory. The
addition of phonon dispersion allows us to describe the
physics of a nonlinear Luttinger liquid. Although our
calculation made no explicit use of integrability – the
existence of solitons is a much weaker property – the
Benjamin–Ono Hamiltonian is integrable at the quantum
as well as the classical level [29]. It would be interesting
to understand the quantum analogs of the classical soli-
tons in more detail.
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