
Non-Fermi liquid fixed point for an imbalanced gas of fermions in 1 + ε dimensions

A. J. A. James and A. Lamacraft
Department of Physics, University of Virginia, Charlottesville, VA 22904-4717, USA

(Dated: March 27, 2010)

We consider a gas of two species of fermions with population imbalance. Using the renormalization group
in d = 1 + ε spatial dimensions, we show that for spinless fermions and 2 > ε > 0 a fixed point appears at
finite attractive coupling where the quasiparticle residue vanishes, and identify this with the transition to Larkin–
Ovchinnikov–Fulde–Ferrell order (inhomogeneous superconductivity). When the two species of fermions also
carry spin degrees of freedom we find a fixed point indicating a transition to spin density wave order.
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Experiments on ultracold atomic gases allow fermionic
pairing phenomena to be investigated with a degree of con-
trol and purity hitherto unknown in solid state systems.
The preeminent example is the observation of the crossover
from Bose-Einstein condensation (BEC) to Bardeen–Cooper–
Schreiffer (BCS) superfluidity effected by tuning the scatter-
ing length between two atomic components using a Feshbach
resonance [1–4].

It is standard lore that pairing between two components at
equal densities – hence with equal Fermi wavevectors – occurs
for arbitrarily weak interactions in the ground state, though the
transition temperature may become very small. By contrast an
imbalance in the two populations requires a sufficiently strong
attraction before pairing takes place [5]. The first experiments
on the imbalanced system [6–9] confirmed this picture, to-
gether with the expectation that the transition between the nor-
mal and BEC superfluid states is first order, leading to phase
separation.

An alternative route to pairing in the imbalanced case
was introduced in Refs. [10, 11]. The Larkin–Ovchinnikov–
Fulde–Ferrell (LOFF) state, as it is now called, is formed from
pairs with center–of–mass momentum equal to the difference
in Fermi momenta. Within mean–field theory the LOFF phase
occupies a rather small part of the phase diagram in terms of
imbalance and interaction strength [12] (see Fig. 1). In lower
spatial dimension, the LOFF phase is expected to be more
prominent [13]. Experimentally, there is some evidence that
the LOFF state occurs in the heavy fermion superconductor
CeCoIn5 [14, 15].

In distinction to the normal–BCS transition, the normal–
LOFF transition is expected to be continuous at low temper-
atures. It is therefore somewhat surprising that to date there
has been no attempt to understand the nature of the quantum
phase transition out of the Fermi liquid state that occurs with
increasingly attractive interaction. It is the purpose of this Let-
ter to provide that understanding for general dimension.

Our main findings can be summarized as follows. Along
the line in d > 1 that forms the phase boundary between the
normal and LOFF states in a diagram of polarization versus
interaction strength (solid red line in Fig. 1) the critical state
is characterized by a singular interaction between fermions of
the two species with anti–parallel momenta. This leads to an
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FIG. 1: (Color online) Schematic phase diagram showing the con-
tinuous quantum phase transition between the normal Fermi liquid
and LOFF states as a function of interaction strength and imbalance.
The LOFF–BCS transition is first order, leading to phase separation.
Inset: vanishing of the quasiparticle residue in the Fermi liquid as the
transition is approached along the bold horizontal arrow. Note that
the exponent varies continuously with P .

incoherent spectral function for particles at the Fermi surface

As(|K| = KF,s, ω) ∼ ωη−1, (1)

where s = a, b labels the species, with an exponent η that
varies continuously along the critical line as a function of the
polarization P = (na − nb)/(na + nb). This line is a higher
dimensional analog of the Luttinger liquid in one dimension.
For weak polarization, P � 1, this result remains true for
d < 3, including the interesting case d = 2. As the transi-
tion is approached from the normal phase, the quasiparticle
residue vanishes continuously. It is our hope that some of
these predictions can be probed in an ultracold gas by the re-
cently developed technique of momentum–resolved RF spec-
troscopy [16, 17]. Towards the end of this work we present
an extension to the problem of spin density wave ordering in
systems with particle and hole Fermi surfaces, which may be
of relevance to the recently discovered iron–based pnictide su-
perconductors [18].

In what follows we assume na > nb and hence the Fermi
wave vectors obey KF,a > KF,b. The energy of a fermion of
species s is given by ξs(K) = εs(K) − µs, where εs(K) =
K2/2ms and µs = K2

F,s/2ms, with mass ms. Near their
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FIG. 2: (Color online) Pairing of majority (blue) and minority (red)
fermions. Left: |Q| = KF,a − KF,b leads to allowed values of
fermion momentum indicated by the dash bounded region. Right:
|Q| 6= KF,a −KF,b yields smaller allowed regions (c.f. the P = 0
case [23]).

respective Fermi surfaces, where we expect the important
physics to occur, the fermions have an approximately linear
dispersion: ξs(K) = vF,sk+O(k2), where vF,s = KF,s/ms

is the Fermi velocity and k = K − KF,s is the momentum
relative to the surface. The effective fermionic Hamiltonian
we will work with is

H =
∑
K,s

ξs(K)ψ†s(K)ψs(K)

+ V
∑

KK′Q

ψ†b(Q−K)ψ†a(K)ψa(K′)ψb(Q−K′), (2)

with a point interaction V that acts only between the different
components and where we have set ~ = 1.

Cooper’s problem Consider a pair of fermions of either
species, above their respective Fermi seas. The two fermions
interact only with each other, with the Fermi seas serving only
to block states below the Fermi level [19]. In vacuum solving
the two–particle Schrödinger equation and imposing the re-
strictions due to Pauli blocking leads to the condition

− 1
V

=
∫
|Q−P|>KF,a

|P|>KF,b

ddP

(2π)2

1
εa(Q−P) + εb(P)− E

. (3)

where Q is the center–of–mass momentum. A bound state
corresponds toE = µa+µb+Eb for someEb < 0, and to find
such a solution for V small requires that the momenta of the
two particles are close to antiparallel. Setting |Q| = KF,a −
KF,b and imposing a momentum shell cut–off of thickness Λ
around each Fermi surface, we see that the angle between P
and Q is limited as P−KF,b → 0 by the condition (see Fig. 2)

θ <

√
2KF,a(P −KF,b)

QKF,b

SettingEb = 0 to find the threshold for bound state formation,
the right hand side of Eq. (3) becomes for Λ� KF,s

Sd−1

(2π)d(d− 1)

(
2KF,aKF,b

Q

)(d−1)/2 ∫ KF,b+Λ

KF,b

dP
(P −KF,b)(d−1)/2

2v̄F (P −KF,b)
=

2Sε
(2π)dε2

(
2KF,aKF,b

Q

)ε/2 Λε/2

2v̄F
(4)

where Sd = 2πd/2/Γ(d/2) is the area of the unit sphere in d
dimensions and v̄F = (vF,a + vF,b)/2. For small ε ≡ d − 1,
Sε ∼ ε, Eq. (3) becomes

− 1
V

=
1

2πv̄F

(
2KF,aKF,b

Q

)ε/2 Λε/2 − µε/2

ε
, (5)

where we have introduced a small infrared cutoff µ. In the
limit ε→ 0 there is a logarithmic singularity log(Λ/µ), lead-
ing to a logarithmically small bound state energy for arbi-
trary negative V . This divergence in the particle–particle (PP)
scattering channel is a consequence of Fermi surface nesting,
ξa(Q−P) + ξb(P) = 0, for antiparallel fermions of the two
species, familiar from the usual Cooper problem and the BCS
theory. The feature that we wish to emphasize is that in the
presence of imbalanced Fermi surfaces, the interaction of an-
tiparallel fermions only produces a logarithm in d = 1. In
the renormalization group (RG) sense it is marginal in d = 1,

becoming irrelevant with dimension ε/2 for d > 1. The above
calculation neglects however the particle–hole (PH) contribu-
tion to scattering, which motivates the following more careful
RG analysis. Previous RG studies with ε 6= 0 have focused on
the case P=0 [20, 21].

RG Calculation The scattering behaviour is encapsulated
by the four point vertex function, Γ, the only contributions
to which at one loop order are the bubble diagrams shown in
Fig. 3, corresponding to PP and PH excitations. For pair mo-
mentum Q = KF,a −KF,b and vanishing external frequency,
ω → 0, these may be evaluated for small angles. The result
for the PP bubble is

−V 2 4Sε
(2π)dε2

(2KF,bKF,a

Q

)ε/2 Λε/2

2v̄F
. (6)

Here the factor of two relative to Eq. (5) is due to an equal
contribution from pairing below the Fermi surfaces. A compa-
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FIG. 3: The two diagrams contributing to the vertex at one loop or-
der. Dashed and solid lines indicate majority (a) and minority (b)
propagators respectively. The notation is explained in the text.
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FIG. 4: Flow diagram for the spinless case, indicating Fermi liquid
(FL) and LOFF phases.

rable treatment results in a similar expression for the PH bub-
ble, but with the opposite sign and Q → Q′ = KF,a + KF,b.
Combining the terms, we have for scattering of an antiparallel
pair at the Fermi surface

Γ = V − V 2 2Sε(2
√
KF,bKF,a)ε/2

(2π)1+εv̄F ε2
Λε/2X + . . . , (7)

with

X =
Q−ε/2 −Q′−ε/2

(KF,aKF,b)−ε/4
. (8)

The Λε/2 dependence of the one-loop correction at Q =
KF,a − KF,b, should be contrasted with the Λ dependence
of the correction at other momenta (see Fig. 2). Dropping
these corrections in the scaling limit Λ/KF,a/b → 0 gives the
Fermi liquid state characterized by the Landau functions, as
in Ref. [23]. Hence the LOFF coupling describes the most
important corrections to the Fermi liquid for ε < 2 or d < 3.

By demanding cut–off independence, Λ d
dΛΓ = 0 and defin-

ing a dimensionless coupling, g, via

g =
Sε(2Λ

√
KF,bKF,a)ε/2

(2π)1+εεv̄F
V, (9)

we obtain the beta function

β(g) = −Λ
d

dΛ
g = − ε

2
g −Xg2 + . . . . (10)

Hence there is a non–trivial fixed point g? = − ε
2X , which is

unstable as illustrated in Fig. 4. Notice the difference from the
more familiar situation, typified by the Wilson–Fisher fixed
point, in which the interacting and free fixed points merge as
the critical dimension is approached. In this case, the vanish-
ing of F as ε → 0 means that β vanishes, leaving the fixed
point at finite coupling. The ε = 0 cancellation extends to all

orders (this may be shown, for example, using Ward identi-
ties [22]) and hence β(g) = 0 for a range of g, indicating the
existence of a Luttinger liquid critical phase.

For ε > 0 and weak imbalance, KF,a ∼ KF,b, the PP con-
tribution to Eq. (8) dominates and the fixed point occurs at
weak coupling

g? = − ε
2

(KF,a −KF,b√
KF,aKF,a

)ε/2
. (11)

Integrating the flow for |g| � |g?| yields g = g0(Λ/Λ0)ε/2,
where g0 and Λ0 are the initial conditions for the scaling. Con-
sequently V is independent of Λ. This is the expected result
for couplings when P = 0 and Q 6= 0 [23]. In contrast, when
g = g? we find V ∼ −Λ−ε/2 so that the coupling becomes in-
creasingly attractive as Λ decreases. The situation for P � 1
corresponds to a microscopic perturbation theory in which the
vertex is given as a geometric sum of PP bubbles.

For strong imbalance we may expand X as a power series
in KF,b/KF,a, X ≈ εKF,b/KF,a. As a result β is given by

β(g) = − ε
2
g − εKF,b

KF,a
g2 + . . . . (12)

The fixed point is now at strong coupling, independent of ε,
and higher order contributions should then be taken into ac-
count. As such it is not possible to make quantitative state-
ments about the strongly imbalanced case, P ∼ 1 using this
method.

We now turn to the fermion self energy. The one loop
contribution produces a routine frequency independent shift
which may be absorbed by the chemical potential, so as to
keep KF,s fixed. The first significant behaviour is found by
calculating the two loop ‘rising sun’ diagram, yielding

∂Re ΣRs (|K| = KF,s, ω)
∂ω

∣∣∣
ω=0

= −g
2Cs,ε
4ε

+O(g3). (13)

Though the coefficient Cs,ε depends on the ratio KF,a/KF,b,
it goes to unity in the limit ε → 0. Note that Eq. (13)
arises from scattering of almost antiparallel particles of the
two species.

Λ independence of the physical correlation functions ne-
cessitates the introduction of a multiplicative field renormal-
ization ψphys

s = Z1/2ψs. Z is fixed by demanding Λ indepen-
dence of the physical Greens function

Gphys
s (|K| = KF,s, ω) =

Z

ω − ΣRs (|K| = KF,s, ω)
. (14)

This implies

d lnZ
d ln Λ

= −Cs,ε
g

2ε
β(g) = Cs,ε

g2

4
+O(g3), (15)

so that at g = g?, Z → 0 as Λ → 0. At the fixed point the
scaling behaviour of the propagator is given by

Gphys
s (|K| = KF,s, ω) ∼ ωη−1, (16)
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where the critical exponent η = Cs,εg
2
?/4 == Cs,εε

2/16X2.
Hence the quasiparticle pole is replaced by a branch cut with
attendant power law divergent spectral function. It is also en-
lightening to determine the dependence of Z on the coupling
as it approaches g?. By linearizing the flow equations near the
fixed point we may derive the following relation between the
start and end points of the flow, (Z0, g0) and (Z, g) respec-
tively,

Z ∼ Z0

(g0 − g?
g − g?

)2η/ε

. (17)

Using the above we may extract the value of the Fermi liquid
quasiparticle residue, Z, due to an initial coupling g0. If we
take g0 > g? so that the coupling flows to g = 0, the final
value of Z will depend on g0 as Z ∼ (g0 − g?)2η/ε (see inset
to Fig. 1).

It is possible to extend the calculation above to treat com-
ponents that themselves have internal degrees of freedom. In
the case that a and b are both spin half particles, the quartic
part of the Hamiltonian becomes

Hint =
∑
σ,σ′

[
(Ve‖δσ,σ′ + Ve⊥δσ,−σ′)ψ†b,σψ

†
a,σ′ψa,σψb,σ′

+(Vd‖δσ,σ′ + Vd⊥δσ,−σ′)ψ†b,σψ
†
a,σ′ψa,σ′ψb,σ

]
.

(18)

where we have supressed momentum labels. Clearly there is
no discernible difference between processes due to Ve‖ and
those due to Vd‖. Therefore we define V‖ = Ve‖ + Vd‖. If
V‖ = −Vd⊥ Eq. (18) is equivalent to an anisotropic Heisen-
berg interaction, with Jz = 4V‖ and Jxy = 2Ve⊥. Focusing
on this case, we define dimensionless couplings, gl = JlA,
where

A = 2Sε(Q−ε/2 +Q′
−ε/2)(2KF,aKF,bΛ)ε/2/(εv̄F (2π)1+ε).

Keeping only the lowest order terms in (so that X = 0) one
finds

β(gz) = − ε
2
gz +

1
4
g2
xy + · · · , (19)

β(gxy) = − ε
2
gxy +

1
4
gxygz + · · · (20)

We discern that there is a non–trivial fixed point at gz? =
gxy? = 2ε. Concomitantly, and in terms of the Heisenberg
exchange couplings, there is a transition to spin density wave
order at antiferromagnetic exchange Jz? = Jxy? = 2ε/A.

An experimentally relevant scenario is that of interacting
electron and hole pockets [24]. Such systems have been inves-
tigated extensively in the context of excitonic transitions and
antiferromagnetism (see for example [25]) and recently be-
cause of interest in the high temperature superconductivity of
iron pnictides [26]. In the calculation presented here, switch-
ing one of the components from particle–like to hole–like al-
ters the dispersion as ξK,s → ξK,h = −vF,hk and changes
the pairing wavevector to |Q| = KF,e +KF,h where the sub-
scripts e and h indicate electrons and holes respectively. In

terms of Eqs. (19) and (20) the effect is to flip the sign of
the O(g2) terms. Again taking V‖ = −Vd⊥, the fixed point
is at gz? = −gxy? = −2ε or equivalently, for ferromagnetic
exchange Jz? = −Jxy? = −2ε/A.

In this letter we have applied the renormalization group to
polarized two species fermi gases in 1 ≤ d < 3 dimensions.
The central result for spinless fermions is the appearance of
a non–Fermi liquid fixed point, characterised by finite pair-
ing wave vector (centre of mass momentum) and power law
spectral function, with an exponent that depends on the polar-
ization. For fermions that carry spin we have shown that there
are non–trivial fixed points that describe magnetic ordering of
the spin density wave type. AL gratefully acknowledges the
support of the NSF under grant DMR-0846788.
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