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1. Introduction

Mechanisms of quantum phase coherence heavily influence spedtahasaport
properties of weakly disordered normal conductors. Such effeetsnanifest in
weak and strong localization effects, and characteristic fluctuation piema.
Over the past thirty years, theoretical progress in elucidating the meahsuois
guantum phase coherence in weakly disordered structures has udestargial:
By now a consistent theory of weakly interacting disordered structuae$hben
developed (For a review, see e.g., Refs. [1-3]).

At the same time, considerable experimental effort has been directeddtowar
the exploration of the influence of phase coherence effects on théppréisle
properties of disordered superconductors. Again, attempts to develmpséstent
theory have enjoyed great success. By now a reliable theory of thidyiater-
acting superconducting system has been formulated. Yet, a completgtescr
of the phenomenology of the disordered superconductor in the peséstrong
interaction effects has yet to be established. The continuing developnrahts a
refinements of experimental techniques continue to present fresh adedl¢n
theoretical investigations.

On this background, the aim of these lecture notes is to selectively review
the recent development of a quasi-classical field theoretic frameworksttribe
phase coherence phenomena in disordered superconductorsgppituaeh, which
is motivated by the parallel formulation of the theory of the normal disordered
system, presents average properties of the superconductor as tamuaid
theory with an action of non-linear-model type. The limited scope of these
lectures does not permit an extensive review the many applications of this tech
nigue. Instead, to illustrate the impact of quantum phase coherence phenome
on the quasi-particle properties of the disordered superconductitensyand the
practical application of the field theoretic scheme, the final part of thees mdll
be devoted to a study of the magnetic impurity system.
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Before turning to the construction of the field theoretic scheme, we will begin
these notes with a qualitative discussion of phase coherence phenontéea in
superconducting environment placing emphasis on the importance offiemdal
symmetries. To close the introductory section, we will outline the quasi-classica
theory which forms the basis of the field theoretic scheme. In section 2 we will
develop a quantum field theory of the weakly disordered non-interactipgrs
conducting system (i.e. in the mean-field BCS approximation). To illustrate a
simple application of this technique, we will explore the spectral properties of
a normal quantum dot contacted to a superconducting terminal. Finally, in sec
tion 3, we will present a detailed study of the influence of magnetic impurities
in the disordered superconducting system. This single application will efizghas
a number of generic features of the phase coherent supercondsgtitagm in-
cluding unusual spectral and localization properties and the importareféeofs
non-perturbative in the disorder.

To orient our discussion, however, let us first briefly recapitulate th&B
mean-field theory of superconductivity in order to establish some notatimhs a
definitions.

1.1. THE BCS THEORY

In the mean-field approximation, the second quantized BCS Hamiltonian of a
weakly disordered superconductor is defined by

Hyes = /dr[;;i 0 (6) (e (B — A/ + W) —er ) ¥r (1)

AU )] (r) + A% (©) (0)v; (x)]

where)! (r) creates an electron of spin at positionr, ¢ denotes the Fermi
energy,A represents the vector potential of an external electromagnetic field, and
W (r) an impurity scattering potential. The order parameter is determined self-
consistently from the conditiol\(r) = —(\/v){¢1(r)y(r)), where) is the
(dimensionless) BCS coupling constant andepresents the average density of
states (DoS) per spin of the normal systeefining the Bogoliubov transform

i) = 3 [ — v 0], e = 3 i) + Ayl )]

)

the Hamiltonian can be brought to a diagonal form by choosing the spinor el-
ementsu,(r) and v, (r) to satisfy the coupled Bogoliubov-de Gennes (BdG)

1 To avoid ambiguity, this is be the density of states¢peimensional volume, for an effectively
d-dimensional system
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equations

Aflua(r)—FA(r)va(r) = Equq(r)
—H* 0o (1) + A" () ua(r) = Eqva(r), 2)

with eigenvalueE,. Here H = H, + W represents the particle Hamiltonian of
the normal system wittly = (p — (e/c)A)%/2m — ep. Sinceu, andv, are
eigenfunctions of a linear operator, the spinor wavefunctiyn= (u.,v,) can
be normalized according thdr ¢! (r) - ¢.(r) = 1. Moreover, the functions,,
andw, form a complete basis such thal, ¢.(r) ® ¢! (r') = 1P (r — /).
Using this expression, we can define the advanced and retardedoGileen
function as

~

T,a o . 2 -1
GGorkov = (6 +140 — HGorkov)

where the quasi-particle Gor'’kov Hamiltonian takes the form

: H A
Hgorkov = <A* _I:IT> . (3)

Of patrticular interest later will be the quasi-particle density of states (De8) p
one spin projection obtained from the relatton

1 .
= Ztr Im G2 =N 5(e — E,).
V(e) - r mGGorkov(e) ; (6 )
In terms of the Gor’kov Green'’s function the self-consistency equation is
A\ .
Afr) = _;Tez: (GGorkov(en)>12 (r,r), (4)

where the Matsubara Green functi@,..kov (€., ) can be found from the analytical
propertyG(e,) = G*(ie,) for e, < 0, ande,, = 7T(2n + 1) denotes the set of
fermionic Matsubara frequencies.

To explore the influence of disorder it is important to understand the funda
mental symmetries of the Hamiltonian. Introducing Pauli matri@%lé which
operate in the matrix or ph-sector #f¢omoy, the quasi-particle Hamiltonian
exhibits the ph-symmetry

] _ ph 74T ph
Hgorkov = —09 HGorkova2 . (5)

2 This is the true spectral DoS of the Gor’kov Hamiltonian (3), thus whth= 0 it is twicethe
normal metal DoS. Of course, the physical DoS of single-particle diarisis not doubled — these
are created by the operatgf. The relation to even the simplest measurable quantities — such as
the tunneling I-V characteristic — requires a discussion of the cohefant®su, andv,, [4]. The
present definition is chosen to emphasize the universality of express®will encounter later.
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In the absence of an external vector poteniah gauge can be specified in which
the order parameter is real, upon which tirae-reversal symmetrffl, . =

Heorkov 1S manifest.

1.2. ANDERSON THEOREM AND THE EFFECT OF DISORDER

Anderson [5] explained why the thermodynamic properties of a ‘distyvave
superconductor are largely insensitive to the degree of disorder.céhibe un-
derstood easily within the Gor’kov formalism. Since Anderson’s papeirtg d
superconductor has been understood to be a material in which the elastar-sc
ing rate1/7 is much larger than the superconducting order paranméterThe
strong inequalityl /7 > |A| is referred to as the ‘dirty limit’. In the dirty limit
impurity scattering washes out any gap anisotropy and one can apply thie simp
BCS model of the previous section with even greater confidence than iietine c
case’ Then it is clear from (3) that wittA = 0 and constant order parameter, the
BdG equations can be solved simply in terms of the eigenvaluasd eigenstates
of the single-particle Hamiltonia#,

EXf =4\/e2 +|A]2. (6)

Thus the DoS of the superconductor is

0 e <Al
_ €
v(e) {QVHW e> Al
independently of the amount of disorder (see Fig. 1). Here we usedhihéd the
normal metallic DoS/, is independent of disorder. More generally the average
Gor’kov Green’s function at coinciding points appearing in Eq. 4 is anged,
so the transition temperatui is unaltered, and so on.

The Anderson theorem is a robust explanation of a striking experimextal f
The conclusion is however suspect from a modern perspective — in the limit
of very strong disorder one would expect localization of the single-parigen-
states to affect superconductivity. The key assumption in the above théhatder
parameter is independent of position. This leads to the self-consistenaiay
(atT =0)

A 1
1:—— e ——
y/de T ‘zy(e,r),

wherev (e, r) is the local DoS of the normal system. Anderson’s theorem thus
requires the replacemente, r) — v,,. This is a valid approximatioeven in the

® Of course, there are high-energy phenomgnaA| where specific details of the interaction
(phonon spectrum, etc.) are important, but we will not be consideriag th
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Figure 1. |-V characteristic and differential conductance measured by scgrinimeling mi-
croscopy on a superconducting layer of AlGBIMK. The dashed line is a fit using a BCS density
of states a1 = 210ueV) convoluted with a thermal Fermi distribution (Bt= 210mK). Taken
from Ref. [6].

presence of localizatioprovided that]A\uLﬁ)C > 1, where Ly, is the local-
ization length andi the dimensionality [7]. In fact, the destruction of supercon-
ductivity can occur in far more metallic samples due to the dramatic effects of
disorder combined with the residual Coulomb interaction. The mean-field treat-
ment of this physics is due to Finkelstein (see e.g. [8]) — but the effectseof th
Coulomb interaction in dirty superconductors are only well understoodriaioe
limits and not at all generally. Even more surprising is that the BCS model in
section 1.1 is compatible with a huge variety of unusual spectral and tnanspo
behaviour enabled by novel mesoscopic phase coherence mechanisms.

1.2.1. Evading the Anderson Theorem

Thermodynamic properties have not historically been the best place téostiart
ing for mesoscopic effects (it was, for example, a long time before attentsn w
focussed on the persistent currents in normal metals). Spectral pespare the
domain of mesoscopics, but the conclusion drawn from Anderson’segheabout
the quasi-particle spectrum may appear to preclude any new effectaupartc
superconducting systems.

In fact the assumptions of Anderson’s theorem seem more restrictiag tod
than at the time. The investigation of hybrid electronic devices containing both
superconducting (S) and normal (N) metallic elements is an extremely acti/e fie
of research. Here the order parameter is not constant throughosys$kem and
Anderson’s theorem does not apply. At the very least one needsnalfation of
the Gor’kov theory capable of handling this spatial inhomogeneity. We willeco
to this quasi-classicaldescription presently. Beyond this description — which
dates back to the late 60s — SN systems do in fact exhibit a wide range df nove
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Figure 2. Diagrams for the evaluation of the Cooperon.

mesoscopic phenomena. These are mediated by Andreev [9] reflectiore — th
phase coherent inter-conversion of electrons and holes at the Saagetue
to the spectral gap of the bulk superconductor.

We will be concerned only tangentially with hybrid structures in later chap-
ters, so a qualitative description of these effects here is not approfigate
discussion, see [10]). There are many other ways, however, to Avaldrson’s
conclusion even in a ‘bulk’ superconductor (including thin films and wirés)
important second strand of experimental evidence discussed in Amdesn
per relates to the deleterious effectmfigneticimpurities on superconductivity.
Unconventional superconductors with non s-wave pairing (the fijghraterials
being the most prominent examples) are likewise affected by normal drsorde
All these counter-examples have very recently been shown to displayatica
mesoscopic behaviour. We will come to this through a fuller explanation of the
robustness to disorder in the conventiogaVlave case.

1.3. PAIR PROPAGATION AND THE COOPERON

Within the Gor’kov formalism outlined in section 1.1, an estimatefprcan be
determined by linearizing the self-consistent equation (4)in

Alr) = —%TZ / ' A G, (5,7)Cie. (r,1) @)
— A / de € Ar N Aa /
= V/dr 5 tanh (2T> Im Gi(r,r")G? (r,r") ,

Whereéen is the Green'’s function corresponding to the single-particle Hamilto-
nian H at imaginary frequency an@"* the real frequency advanced and retarded

counterparts. Taking\ to be constant as before we average over disorder con-
figurations to find(G*(r,r')G? (r,r')). The evaluation may be performed using
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Figure 3. Dominant contributions to time-reversed pair propagation in the Feyniicturg. The
phase of the amplitudd, is the opposite of, if time-reversal symmetry is preserved.

the standard ‘cross’ technique [11] based on a GausSieorrelated impurity
distribution,

_ AN 1 d -
(W(r)) =0, (W)W (') = 27”/7_5 (r—1'), (8)
and is illustrated in Fig. 2. The result is [12]
Ar N A N 2y )
O b = I ©)

HereD = v%7/d is the diffusion constant, wherg- = pr/m denotes the Fermi
velocity. The two-particle quantity under consideration evidently relates to the
propagation of a pair of electrons between two points in opposite direcilidws.
diffusion pole structure of the average signals the presence of a dythimic
mode of pair propagation known as t@eoperonIn the language of the Feynman
path integral, this is because the dominant trajectories for the propagatiba of
pair through a given disorder realization come from the the electrons ¢racin
precisely time-reversed paths, so that the phase accumulated in the auguiil
tude in propagation is completely canceled (see Fig. 3). The phase ofrafla s
propagating electron is scrambled after a time, but two particle averages like
the above depend on the ‘bulk’ propeiy Their inclusion in diagrammatic calcu-
lations typically leads to anomalously large contributions from long wavelengths
due to their diffusive structure.

Returning to the matter of determiniri§., from the result above, the self-
consistency condition (7) takes the form

€ 1
1= —)\/detanh (2T> % (10)

independent of disorder, yielding. ~ wpexp(1/\), with wp the Debye fre-
guency at which the interaction is cut off. The multiple scattering between time-
reversed electrons summarized by (7) is absolutely indifferent to theddisor
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266 A. LAMACRAFT AND B. D. SIMONS

potential through which they propagate. Thus we see the intimate connection
between time-reversal invariance in the original single-particle Hamiltonidn an
Anderson’s theorem.

What happens if time-reversal symmetry is broken (by the application of a
magnetic field, for example)? Then the propagating pair progressivedy leta-
tive phase coherence as time passes. The Cooperon ceases to bedgeymahic
mode

| / | L 2y
(G (1) G (x,1)) = <Dq2 +2fea] + 1/w>”/ |

Here 1/, represents some rate characteristic of the symmetry-breaking pertur-
bation. Substituting this into (7) one obtains the celebrated result obtained by
Abrikosov and Gor’kov [13],

T.o 1 1 1
1 = — | - - 11
n(n) ¢<4m¥,T0+2> ¢<2) ’ (11)
whereT. g is the critical temperature a7, = 0. The complete destruction @f.
is predicted all /7, = 1.767 o (see Fig. 4).

0 O.‘S i 1.‘5 2
1/TCOT o

Figure 4. Suppression of . predicted by the Abrikosov-Gor’kov theory

One of the main themes in the following chapters will be the mesoscopic
nature of various processes that impinge on the coherent pair prtogpagsspon-
sible for superconductivity. In this context, we should note that, in addition to
the time-reversal symmetry breaking perturbations discussed here iticasie
both the static and dynamic parts of the Coulomb interaction. While the static part
acts like the BCS interaction, the dynamic part like a pair-breaking perturbatio
Before we can begin, there is one more subject to introduce.
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1.4. SYMMETRIES OF THE HAMILTONIAN AND RANDOM MATRIX THEORY

In the previous section we encountered an important theme in mesoscopics; th
central role played by the basic symmetries of the Hamiltonian. In fact there is
a limiting sense in which a mesoscopic system is entirely characterized by its
symmetries: Let us first focus on the normal system. From the conductiwity

we can define the conductan€e = o L% 2 which, making use of the Einstein
relationo = e?vD can be expressed as

2 2
e 4hD e Er
= —vlt— = — = —
G v hg, g 5

- i (12)

wheres = 1/vL¢ denotes the average energy level spacing of the normal system,
and Et = hD/L? represents the typical inverse diffusion time for an electron to
cross a sample of dimensidif — the ‘Thouless energy’. This result shows that
the conductance of a metallic sample can be expressed as the produajwhiie
tum unit of conductance?/h = (4.1kQ)~!, and adimensionless conductance
g equal to the number of levels inside an energy intealln a good metallic
sample, the dimensionless conductance is layge, 1.

One of the central tenets of mesoscopic physics is that the spectratigepe
of Hamiltonian of a disordered electronic system can be modeled as a random
matrix of the appropriate symmetry. This remarkable correspondence holes if
are concerned only with energies withity of the Fermi surface, or equivalently,
with times longer than the transport time = L?/D across the system. Crudely
speaking, this is due to the existence of an ergodic regime at these scaletheh
entire phase space has been explored. If we are only concerned iwitegime it
is appropriate to take the ‘universal’— oo limit. Within the o-model formalism
that will be developed later, the emergence of the random matrix description is
very natural.

The random matrix description is formalized by defining a statistical ensemble
P(H) dH from which the Hamiltonian which models our system will be drawn.
The choice encountered most frequently in the literature is the Gaussiamieles

1
P(H) dH = exp {——2 tr HQ] dH . (13)
v

Restricting the discussion to ordinary normal metals, three principal \sailrgr
classes of the Random Matrix Theory (RMT) description can be identifibfl |
according to whether the matrii{ is constrained to be real symmetrié & 1,
Orthogona), complex Hermitian § = 2, Unitary), or real quaterniond = 4,

4 In this section we discuss only non-interacting systems (including the fiddrreatment of
interactions represented by the Gor'’kov Hamiltonian (3)). Recently thésean extended to the
interacting case [14]

sinons. tex; 1/04/2002; 17:46; p.9



268 A. LAMACRAFT AND B. D. SIMONS

Symplectiy. Hamiltonians invariant under time-reversal belong to the orthogo-
nal ensemble, while those which are not belong to the unitary ensemble. Time-
reversal invariant systems with half-integer spin and broken rotatigmairetry
belong to the third symplectic ensemble.

Expressed in the basis of eigenstates= UTAU, whereA denotes the matrix
of eigenvalues, the probability distribution (13) can be recast in the form

P({e}) d[{e}] = H|€z*€j‘BH€ i/t dey,

1<j

where the invariant measure reveals the characteristic repulsion of drgyen
levels.

The Dyson classification is made on the basis of the symmetries of time
reversalZl and spin rotatiors:

T:H=0H"0P, S:[H, o] =0,

wherecs:? are Pauli matrices acting on spin.

In the present context it is natural to ask what happens when we etliend
discussion to superconducting systems described by the Gor'’kov Hamiltonia
Altland and Zirnbauer [16] have provided the answer, introducing théuseven
symmetry classes, exhausting the Cartan classification of symmetric spaces up
which they turn out to be based. Their analysis was technical, but weeestihe
idea through a simple example. As a prototype of the superconducting system
let us consider the example of2aV x 2N matrix Hamiltonian with a parti-
cle/hole structure. The simplest case corresponds poeserved and” broken.

The Hamiltonian

#=( a1 ). (14)

where the block diagonal elements are complex Hermifiéns= h, and the off-
diagonal blocks are symmetria” = A, exhibits the ph-symmetry

H=—-oS"H"oP" (15)

In this case, according to the Cartan classification scheme, the Hamiltonjan (14
belongs to the symmetry class C. Taking the elements to be drawn from a Gaussia
ensembleP(H) dH = exp[—tr H?/2v?] dH, the distribution function takes the
general form

P{end{eX] = [T 1€ — 1P T lew| e~/ dey,
k

1<j

wheres = 2 anda = 2 [16]. The repulsion that the levels feel fram= 0 follows
from the privileged place that energy possesses in the Gor'’kov HamittoBia
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imposing the further symmetry of time-reversal (ité. = h and A* = A), the
symmetry is raised to class Cl with= 1 anda = 1. Once again, an extension
to a spinful structure identifies two more symmetry classes [17].

Why is the classification scheme useful? In fact, the low-energy, lorgedhn
properties of the disordered superconducting system are heavilyraioes by
the fundamental symmetries of the Hamiltonian. We will see that the localization
properties of the low-energy quasi-particle states can typically be immediately
inferred from the symmetry classification alohe.

We saw that the existence of a hydrodynamic Cooperon mode was a fun-
damental consequence of time-reversal symmetry in a ordinary (nOkeSpr
Hamiltonian. Therefore the Cooperon should be viewed as a perturbfitive
g, counterpart of the universal RMT description of the orthogonalsclas the
same way we can expect that new soft modes will appear as signaturesnafth
symmetry classes. As their very existence depends on the Gor’kov sewdtilne
Hamiltonian, it is not surprising that the effects of these new modes ardairaju
low energies. Crudely speaking, the order parameter can be vieweplcasrdial
scattering particle excitations of energyo hole excitations of energy-e. It is
evident that these processes, like the Cooperon, are coherent-a®. Hence
the existence ofow energy quasi-particle states absolutely necessary for the
new channels of interference to be effective. All the aforementionathpies of
superconducting systems that evade Anderson’s theorem have tpirtyréor
some parameter ranges and, as such, are candidates for the obserfatav
mesoscopic effects. For instance, systems of class C symmetry will prelsumab
display some precursor of the level repulsion frem 0 in the averaged density of
states before the universal limit is reached. The possibility of observengatic
behaviour insingle quasi-particle properties instead of two-particle properties is
an exciting prospect.

This completes our discussion of the phenomenology of the weakly disor-
dered superconducting system. In the following we will develop and apiiyca
theoretic framework which captures both the perturbative and nonpative
effects of quantum interference on the quasi-particle properties ofytters.
However, to prepare our discussion of the field theoretic scheme we béhin
a brief review of the quasi-classical theory of superconductivity wiicms the
basis of this approach.

1.5. THE QUASI-CLASSICAL THEORY

Typically, it is found experimentally that the Fermi energy of a supercon-
ductor is always greatly in excess of the order parameter|n conventional
‘low-temperature’ superconductors, the ratjg/ A is often as much ag)3. From

® There are rare cases — such as the disordéredve superconductor [18, 19] — where the
particular nature of the disorder is important.
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this fact we can infer that the description of the superconductor in terntiseof
exact Green function carries with it a certain amount of redundantrirdton.
The quasi-classical method exploits this redundancy to develop a simplifieg the
describing the variation of the Green function on length scales comparéble w
the coherence length (which, in the clean system, is givefhbyvp /A > Ap).
This makes the quasi-classical method ideal for the description of inhoreogen
situations (like the hybrid devices mentioned before).

In the BCS mean-field approximation, the single quasi-particle properties of
the superconductor are contained within the equation (of motion) for trenadd
Gor’kov Green function (3)

o= = (08" = A] Goron (11 = 12) = 6%(r1 —12)

wheree_ = ¢ — i0, { = p2/2m — ep, andA = |A|gPle—ivod",

In the quasi-classical limigz > |A|, fast fluctuations of the Gor'’kov Green
function (i.e. those at the Fermi wavelength = 1/pr) are modulated by slow
variations at the scale of the coherence lengts v /A of the clean system.
In this limit, the important long-ranged information contained within the slow
variations of the Gor'’kov Green function can be exposed by averamiegthe
fast fluctuations. Following the procedure outlined in the seminal work ohEile
berger [21], and later by Larkin and Ovchinnikov [22, 23], the resglquation
of motion for the average Green function assumes the form of a kineticiequa

vpn - Vg(r,n) —i [g(r, n), (e— + A)agh} =0

where, defining: = (r1 +r2)/2, ¢ = vp(p — pr), andn = p/pr,

A~

Géorkov (I‘, p)

g(r’ n) - io-gh/dq /d(r1 N rz)ééorkov(rla r2)eip-(r1—r2) .
s

This Boltzmann-like equation of motion, known as the Eilenberger equatipn, re
resents an expansion to leading order in the ratio\ pfto the scale of spatial
variation of the slow modes of the Gor'kov Green function. The Eilenlrerge
Green’s function satisfies the non-linear constraiii:,n)> = 1, fixed in the
usual formulation by the homogeneous BCS solution discussed belowf§24] (
reasons which will become clear later, we will not dwell here upon the odfin
this condition).

In the presence of weak impurity scattering (fe= vpT > Ap), the Eilen-
berger equation must be supplemented by an additional term which, in the lan-
guage of the kinetic theory, takes the form of a collision integral. In the Born
scattering approximation, the corresponding equation of motion for thegwer
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Green function assumes the form

vpn- Vg(r,m) — i [g(r.m), (e + A)of"]

Now, in the dirty limit¢ < ¢, where¢ = (D/A)'Y/? represents the super-
conducting coherence length in the dirty limit, the Eilenberger equation can be
simplified further. In this regime the dominant transport mechanism is diffusion
Under these conditions, the dependence of the Green function on the momen
tum direction f = p/pr) is weak, justifying a moment expansiofr,n) =
Go(r) + n-gi(r) + ..., wherego(r) > n - g(r). A systematic expansion of
the Eilenberger equation in terms gf then leads to a nonlinear second-order
differential equation — the Usadel equation — for the isotropic comporg&it [

DYV (go(r)Vio(r)) +i [do(x), (e + A)ok"[ =0, (16)

As in the parent Eilenberger case, the matrix field obeys the non-lineatraont
do(r)? = 1. Finally, when supplemented by the self-consistent equation for the
order parameter,

—1 0' ~

|A(r)| = ——T;tr [02 e ¥ 3 go( )inen’ an
where the trace runs over the particle/hole degrees of freedom, thit@yda-
scribes at the mean-field level the quasi-classical properties of theddrisolr
superconducting system. By averaging over the fast fluctuations atdaleedf the
Fermi wavelength, the long-range properties of the average quasiezb&reen
function are expressed as the solution to a non-linear equation of motion.

Let us illustrate the quasi-classical Usadel theory for a weakly disedder
bulk singlet superconducting system. In this case, the solution of the meddn-fi
equation can be obtained by adopting the homogeneous parameterization

Jbes = cosh 6 03 —¢sinh 0 Jphe_w% . (18)
When substituted into Eq. (16), one obtains the homogeneous solution
1A]
E

whereE = (2 —|A|?)!/2. Here the root is taken in such a way thiat, ., F —
€_, i.e.8 = 0. Finally, when the solution (19) is substituted back into the self-
consistent equation (17), one obtains the BCS equation for the ordenpter,

\A!
Al = =AnT

cosh 6, = % sinh 0, = (19)

sinons. tex; 1/04/2002; 17:46; p.13



272 A. LAMACRAFT AND B. D. SIMONS

i.e. at the level of mean-field, the average quasi-classical Green fanstiesen-
sitive to the random impurity potential — a result compatible with the Anderson
theorem.

This concludes our introductory discussion of the disordered supeéoot-
ing system. The quasi-classical theory (and it's extension to the non-equib
systems) has proved to be remarkably successful in explaining mechasfisms
phase coherent transport observed in hybrid superconductimgahcompounds.
However, as a comprehensive theory, the quasi-classical schengeisioaom-
plete: In such environments, low-energy quasi-particle propertieshebeaavily
influenced by quantum phase coherence effects not accommodatefrg slent
theory. In the following section, we will develop a description of the supedact-
ing system within the framework of a quantum field theory. Here we will findl tha
the quasi-classical theory above represents the saddle-point deativef action
whose fluctuations encode the missing mechanisms of quantum phasencehere

2. Field theory of the disordered superconductor

The development of a statistical field theory of the weakly disorderedrcoipe
ductor closely mirrors the formulation of the quasi-classical theory outlined in
section 1. However, the benefits of the field theoretic scheme are caatslieter

1. Firstly, the field theoretical approach provides a consistent methogtorex
the influence of mesoscopic fluctuation phenomena both in the “particle/hole”
and “advanced/retarded” channels. As discussed above, sedtsdiiecome
pronounced when low-energy quasi-particle states persist. Indegdgsan-
tum interference effects can be explored even in situations where the mean
field structure is spatially non-trivial such as that encountered with hybrid
superconducting/normal structures.

2. Secondly, and more importantly, it provides a secure platform for thieeu
development and analysis of Coulomb interaction effects and non-equitibriu
phenomena through straightforward refinements of the field theoretiowche

3. Finally, the field theoretic approach has great aesthetic appeal: itserton
is largely constrained by the fundamental symmetries of the disordered su-
perconducting system. Within this formulation, the soft low-energy modes
responsible for the long-ranged phase coherence propertiesbdebaor the
previous section are exposed.

For these reasons, we will provide a detailed exposition of the field theo-
retic method from formulation to application. The starting point will be an exact
functional integral representation of the generating function of the ele@Green
function. The latter must be normalizéwlependently of the disordefhis can
be achieved via the supersymmetry, replica, or Keldysh methods. Sinceliwe w
restrict attention to the non-interacting system, we will focus on the supersymme
try technique (which extends to the mean-field treatment of superconityictix
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the semi-classical approximation, we will use the intuition afforded by thei-quas
classical scheme to identify the low-energy content of the theory of trexrie
averaged system. As a result, we will show that the low-energy, longethn
properties of the disordered superconductor can be presented psraygnmetric
non-linearc model.

In the remainder of the chapter we will apply the supersymmetric scheme to
analyze the spectral properties of a hybrid superconductor/nornaataun dot
device. Later, in the subsequent chapter we will see how this schemenfwes
method to explore non-perturbative effects in the magnetic impurity system.

2.1. FUNCTIONAL METHOD

2.1.1. Generating functional

To compute the disorder averaged Green function, we will use Efetoysrs
symmetry method [26, 27] tailored to the description of the superconductsig sy
tem [28, 29, 10]. The analysis (and notation) adopted here is basegedaa
gogical exposition of the method by Bundschuh, Cassanello, Serbadiand
bauer [30]. Within the supersymmetric approach, the Gor'’kov Greeatifom is
obtained from the generating functiofal

20) = [ Dbl exp | [ dr (1o )+ 55+ 50)]

where, as usuak_ = ¢ — 70 and, in the mean-field approximatioﬁi(;orkOV
denotes the Gor'’kov Hamiltonian (3). For the moment we ignore the spin steuctu
and retain only the Nambu space. Formally, the infinitesimal, which provides con
vergence of the field integral, imposes the analytical structure of the Gueen
tion. The functional integral is over supervector fieltls) and:)(r), whose com-
ponents are commuting and anticommuting (i.e. Grassmann) fields [26]. Introdu
ing both commuting and anticommuting elements ensures the normalization of the
field integral,Z[0] = 1 — a trick clearly limited to the mean-field (single quasi-
particle) approximation. Thus, in addition to the (physical) particle-hplg 6r
Nambu structure, the fields are endowed with an auxiliary “boson-fernfiof)”
structure. A generalization to averages over products of Green funsctdlows
straightforwardly by introducing further copies of the field space.

To capture all possible channels of quantum interference in the etighory
is is necessary to further double the field space [27]. This “chargrigation”
(or cc) space, is introduced by rearranging the quadratic form of the gémgra
functional as follows:

® Historically the field-theoretic approach to disordered electron probledhsdso Wegner [31]
who used the replica formalism for the derivation of the nonlinear sigmdemmo
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20(HGorkov — €)%
= P(Hgorkov — €~ )0 + YT (HE o geor — €~ )07
= P(Hcorkov — €~ )0 + 97 (=05 Hoorkoyoh — e )"
U(Hgorkoy — €-05)¥

where
- 1 _ 1 P
W:ﬁ(¢ _wTU§h>a \P:E<O’5h¢T>.

Here the superscrigf’ denotes the supertransposition operafi@and o° rep-
resent Pauli matrices acting in the charge conjugation space. As a censeg
the two supervector field¥, and¥ are not independent but obey the symmetry
relations

U= aghy o, U=l Ugh'y_l, (20)
where
__ qph O-fc
p=wte (TN L) (21)

To summarize, the generating functional for averages of productsesdrGunc-
tions can be written as

2[0] = / D[, U] exp [z / dr B Hoomor —eagcm} .

For clarity, explicit reference to the structure of the source term has bas-
pended. The latter can be restored when necessary.

7 In the following it will be important to note that the transformation rules fqueswectors and
supermatrices differ from those of conventional vectors and matringzarticular, if we define a

pair of supervectors
S _ _
= =(8 ¥
¥ ( N ) , = (8x)

with commuting and anticommuting elemerfis S and x, x respectively, the supertransposition
operation is defined according to

vots . o= (%)

Similarly, under a supertransposition, a supermatrix transforms as

S1 x1 T S1 —Xx2 s T\T
_ = . e. F .
F (X2 5,2)7 F (Xl S, , ie. F# (F")
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2.1.2. Impurity averaging

To develop the low-energy theory of the disordered supercondubofirst step

in the program is to implement the impurity average. The result will be to trans-
form the free theory into an interacting theory. Separating the Gor'’komiHa
tonian into regular and stochastic partsEgomoy = Hoy, + W (r)ol™ and
subjecting the generating function to an ensemble average over a Gadissian
correlated impurity distribution (8),

e—Tl'Vdel‘ W2(r)DW

P(W)DW =
( ) fDWe—ﬂm'ferQ(r)
one obtains
(Z[0])yy = / D[, U] exp { / dr (i9(HE), — c-05)¥
o T, _Phg,\2
4WUT(W03 v) )]'

In this form we can proceed in two ways: firstly, we could undertake &uper
bative expansion in the interaction. Indeed, an appropriate reamargeof the
resulting series recovers the diagrammatic diffusion mode expansion.ohdec
and more profitable route, is to seek an appropriate mean-field decompadition
the interaction. Specifically, we are interested in identifying the diffusiveesod
discussed in chapter iLe. two-particle channels arising from multiple scattering
with momentum difference smaller than the inverse of the elastic mean free path,
= VET.

2.1.3. Slow mode decoupling

Isolating these modes is a standard, if technical, procedure [27] whianise
niently performed in Fourier space. Let us then focus on the quartic atiena
generated by the impurity average:

! / dr (T v(r)”.

drvt
From this term, we want to isolate within it the collective modes involving small
momentum transfetg| < g9 ~ 1/¢, which are to be decoupled by a Hubbard-
Stratonovich transformation — these represent the soft modes identifiet-in s
tion 1.4. To achieve this, following Ref. [30], we present the interaction & th
Fourier representation, viz.

/ dr (@(r)a?h\ll(r))Q

= Y U(ki)od U (ko) U(ks)oh U(—k; — ko — ks).
ki,ka,k3
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Now there are three independent ways of pairing two fast single-panticieenta
to form a slow two-particle momentung

[P(k)| U(ka) | P(ks) |P(—ki — ks —k3)

(a)|| k |-k+q| ¥ -k’ —q
M) k |-k —q|-k+q K’
(o] k kK |-k —q -k+q

Term (a) can be decoupled trivially, producing no more than energisshit can
be absorbed by a redefinition of the chemical potential. The other two temns ca
be rearranged in the following way. For term (b) we have

> Wk K — q) U(—k + q)ot" (K

l;kkq; U (k)ob"w(—K — q) U7 (K)o 07 (—k + q)

_ kik;’:q/(k)o'g U(-K — q) (~U(K)y7 ') of" (702" U(~k + q))
L e

Here we have introduced the supertrace operation which acts on arstggi/
according tostr M = tr My, — tr Mg. Moreover, we have made use of the
symmetry relationsh? = o3 W, and¥? = —Iy~1B", which follow from

Eq. (20). Finally, the term (c) is easily brought to the same form by using the
cyclic invariance of the supertrace. Therefore, to assimilate the sofeeegf
freedom, we may affect the replacement

47711/7' /dr (\T/(r)ag)?hlll(r))2 ~ 2 x 47711/7' Z str [[(—q)T'(q)],

where the factor o2 reflects the two channels of decoupling (b) and (c), Rrisl
given by a sum of dyadic products of the fieMlsand ¥

=3 U(-k+q)® T(k)os".
k
(Note that, if the summation over was unrestricted, the Hubbard-Stratonovich
transformation would involve an overcounting by a factoRgf
With this definition, we can now implement a Hubbard-Stratonovich decou-
pling with the introduction oB x 8 supermatrix fieldsg),

1
2Tt

>_str (F(a)l(—q))

qa

exp | —
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TV

~ [ Qe [QL st (T e@e(-a) - Aar-a)

The symmetry properties @) reflect those of the dyadic productq). In partic-
ular, the symmetry relation

str {Q\I' ® \i’agh} = str _agh‘ilT ® \IJTQT}
= str _agh(v_lagh\ll) ® (—\IWUQph)QT}

= str [Ugh’yQT’flaghagh\I/ ® \Tl}

= str _aﬁ)h'yQTyflafh\I' ® \ifagh} ,
is accounted for by subjecting the supermatpixo the linear condition
Q=" QT o (22)

Finally, integrating out the field¥, and¥, and switching back to the coordinate
representation, we obta{£[0]) = [ DQ exp [-S[Q)]], where

1 .
S[Q] = —/dr [Es‘cr Q?>— = strlng . (23)
8T 2
Here
G l=C+0"A—ec o 0ot + %Q (24)

represents the ‘supermatrix’ Green function with= \A|a{’he—iW§h.

The domain of integration of the Hubbard-Stratonovich fi@lds important.
It is fixed by the requirement of convergence (in the boson-bosork}land this
ultimately determines the structure of the saddle-point manifold oftheodel.
Historically, the first careful analysis of this issue is due to Weidigilam Ver-
baarschot and Zirnbauer [32] for the normal case. Later, Zirntjdré provided
a construction for each of the ten universality classes that emphasizdgedheaic
aspects in ensuring convergence. In chapter 3 the integration manifoluewitial
in our analysis of instanton saddle-points: we will specify the requiredocos
there and refer to the literature for the details.

The problem of computing the disorder averaged Green function (andcif
essary, its higher moments) has been reduced to considering an effesltithe-
ory with the actionS[Q]. Further progress is possible only within a saddle-point
approximation.

2.1.4. Saddle-point approximation and tlhkemodel

The next step in deriving the low-energy theory is to explore the sadute-p
structure of the effective action (23), and to classify and incorporateuhtions
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by means of a gradient expansion. This is most straightforwardly achiswen-
plementing a two-step procedure devised in Ref. [10]. For in the dirty g
1/7, the scales set by the disorder and by the superconducting ordergtaraare
well separated, so that one can perform two minimizations in sequence.

The strategy adopted in Ref. [10] is as follows: at first, one neglectsriter o
parameteA and the deviation of the energy from the Fermi leveBy varying
the resulting effective action, one finds the corresponding saddle-mainifold
stabilized by the semi-classical parameter > 1. Then, fluctuations inside this
manifold are considered; they couple to the order parameter and to thgyener
e. The resulting low-energy effective action is varied once again insiddirgte
(high-energy) saddle-point manifold. We will find that the correspomdow-
energy saddle-point equation coincides with the Usadel equation (t@hdo
average quasi-classical Gor’kov Green function in the dirty limit.

In the absence of the order parameter, a variation of the action functbnal
the Fermi energys Q] yields the saddle point equation:

1
Q(r) = —G(r.r)
Taking the solutiorQs, to be spatially homogeneous, and settjngp/(27)? =
Jv(¢)d¢ ~ v(0) [ d¢, the saddle-point equation can be recast as

i d
%= (25)

— e_agh ® ogh + Z'QSID/ZT7

where the positive infinitesimdl™ allows a distinction to be drawn between the
physical and unphysical solutions. Fgrr > 1 the integral (25) may be evaluated

in the pole approximation from which one obtains the diagonal matrix solution
Q = diag(q1, g2, -..), With ¢; = 1. To choose the signs correctly, we note that the
expression on the right-hand side of the saddle-point equation relates@veln
function of the disordered normal system evaluated in the self-consBtent
approximation. The disorder preserves the causal (i.e. retardegsvadsyanced)
character of the Green function, and therefore the sign wiust coincide with the
sign of the imaginary part of the energy. This singles out the particulatisolu

_ _ph ce
Qsp = 03 ®o03".

As anticipated, however, this solution is not unique for— 0. Dividing out
rotations that leave$® ® a§h invariant, the degeneracy of the manifold spanned
by @ = TQs, T~ is specified by the coset spa8¥(2, 2|4) /SU(2|2) @ SU(2|2).
The above form ofQ)s, means that the manifold may also be defined by the
non-linear conditiorQ? = 1.

Fluctuations transverse to this manifold are integrated out using the saddle-
point parameterL¢ /7 >> 1. In the Gaussian approximation they do not couple
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to fluctuations on the saddle-point. Furthermore, the integration yields a fz#cto
unity by supersymmetry [27] (for a more complete discussion see, e.g[3RBf.
With the saddle point approximation understood, it is straightforward toeéne
o-model action from (23) by insertin@(r) = T'(r)Qs, T (r) into the expres-
sion (23) forS[Q] and expanding il\ ande, and up to second order in gradients
of Q(r), neglecting higher-order derivatives.

sfal = = / dr str [D(VQ)” — 4i(A + c_o§)o5"Q] . (26)

where D = v%7/d denotes the classical diffusion constant of the normal metal.
The effect of a vector potentiak is included by the replaceme’t — V=
V- ieA[agh, 1 [27].

Let us emphasize the approximations used in the derivation of (26). Beside
the quasi-classicakfr > 1) and saddle-point(L?/7 > 1) parameters, one
requires that all energies left are small comparet/to, which allows us to trun-
cate the expansion. Thus the action applieél¥g?, ¢, A) < 1/7, whereq is a
wavevector characterizing the scale of variatioldofT his includes the usual dirty
limit. We stress again that the completeness of the description provided by the
action (26) within these approximations means that all physics at thesaemnerg
should be contained.

This completes the derivation of the intermediate energy scale action. How-
ever, even on the soft manifol@?(r) = 1, the majority of degrees of freedom are
rendered massive by the order parameter and energy. To explorgubiige of
the low-energy action it is necessary to implement a further saddle-pahtsia
of (26) taking into account the influence of the superconducting oral@mpeter.

2.1.5. Low-energy saddle-point and soft modes

To identify the low-energy saddle-point it is necessary to seek the optmeagje
configuration of the supermatrix fiel@ for a non-vanishing order parametar
and, in principle, a non-vanishing magnetic vector poterialWe therefore re-
quire S[Q] to be stationary with respect to variations @fr) that preserve the
non-linear constraing?(r) = 1. Following Ref. [30], such variations can be
parametrized by transformations

6Q(r) = n[X(r),Q(r)],
whereX = —oP7X7T+15P" 50 as to preserve the symmetry (22). Subjecting

the action to this variation, and linearizing M, the stationarity conditionS = 0
translates to the equation of motion

DV (Q%Q) +1 [Q, (e_os® + A)Ugh} = 0. (27)
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AssociatingQ (r) with the average quasi-classical Gorkov Green functigr),

the saddle-point equation is identified as the mean-field Usadel equatipae-16
rived in section 1.5. In hindsight the coincidence should not be surgridineach
stage of this calculation we have implemented approximations consistent with the
quasi-classical scheme. With this understanding, we will tend to refer tdothea

as the Usadel equation.

Although the solution of this equation constrains many of the degrees of free
dom to a single saddle-point, in the linait= 0 several degrees of freedom remain
massless for any value of the order paraméteBpecifically, the action functional
S[Q] is invariant under transformations

Qr) » TQ()T™!, if T=1"®t (28)

with ¢ = v(t~1)T~~! constant in space. The latter condition means thans
through an orthosymplectic Lie supergro@$p(2|2). According to the classi-
fication scheme discussed in section 1.4, this defines the symmetry class CI. In
presence of a magnetic field, the space of massless fluctuations is furttier d
ished to the coset manifoldSp(2|2) /GL(1|1) characterizing the symmetry class

C. Not all of the classes are available to us in the present formulation.|aéses
designated D and DI require the introduction of spin degrees of free@lomwill

be done in the next chapter, where we will encounter a realization of Dlassl

the associated novel phase coherent phenomena.

This completes the formal construction of the low-energy statistical field the-
ory of the weakly disordered superconductor. At the level of the nirdah-of
saddle-point, an application of this theory reproduces the results of tag-qu
classical scheme. The role of fluctuations around the mean-field impacts most
strongly on situations where low-energy quasi-particles are allowed tg exis
guasi-particle states trapped around a vortex in the mixed phase [30} Unudk-
conductors driven into a gapless phase by a parallel magnetic field oreti@gn
impurities (see section 3), or hybrid superconductor/normal structlioesxplore
the impact of these novel mechanisms of quantum interference, in the fojjowin
section we will explore the phenomenology of the magnetic impurity system.
However, before doing so, let us first explore the mean-field struatitae
action focusing on two simple examples: the betivave superconductor (and the
restoration of the Anderson theorem), and the case of a quantum dattahto
a superconducting terminal. Indeed, the latter solution will be needed iniséctio

2.2. DISORDERED BULK SUPERCONDUCTOR

In the absence of a magnetic field, taking the order parameter to be spatially ho
mogeneous and specifying the gauge- 0 (i.e. A = a{’hlAl), the saddle-point
equation forQ) can be solved straightforwardly. With the ansatz

Qsp = 05 @ 05" cosh § — ioB" sinh (29)
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where the matrix is diagonal in the superspace with eleméhts diag(6y,, 0 ),
the saddle-point or Usadel equation assumes the form

DV?0 +2 <|A| coshf — e_ sinh é) =0 (30)

Taking 6 to be homogeneous with, = 6;, we obtain the BCS solutiofi =
s (19).

Having obtained the quasi-classical Green’s function we can imposelthe se
consistency conditiolh = —(\/v){¢ 1) as usual. We obtain the gap equation

|Al =iAnT > sinhfle_ i, (31)
€n
where the summation is taken over fermionic Matsubara frequeacies T (2n+
1). Similarly, from the saddle-point solution, we obtain the quasi-particle DoS

1 - 1 .
vie) = ;tr Im G~ (e) = —Etr Im gagh ® o5°
= %Re str {O’?f ® o5 ® agh Q} = 2v,Re cosf(e) ,

just as in the usual quasi-classical theory.

We finish this first example with an important technical comment. In the
present formalism the above result follows from a saddle-point ajpedion.
Yet normally any quantity calculated in this way is weighted by a faetof@s»l,
To complete the correspondence with the usual quasi-classical theongte/that
the saddle-poin)s;, should be chosen proportional to unity in the boson-fermion
space. Through the definition of the supertrace, this ensuresSttag] = 0.
In the same way, any fluctuation corrections to the saddle-point actionhviapis
supersymmetry [274.Saddle-point configurations that are not ‘supersymmetric’
in this sense can be important and we will discuss such a case in the nptércha

2.3. HYBRID SN-STRUCTURES

With the Usadel equation in hand, one can proceed (once the cornactidiy
conditions are known) to find solutions in more complex geometries, thatidescr
hybrid superconductor-normal systems [10]. In chapter 3 we will ribednean-
field result for a geometry that cannot in fact be described by the Wegdation
as it stands. This is the case of a quantum dot contacted to a super@wnduc

2.3.1. Quantum dot contacted to a superconductor
The case of a normal quantum dot coupled to superconducting leadytheou
contact of arbitrary transparency (see Fig. 5) presents us with a dileifinea.

8 Of course, fluctuations are important in the calculation of non-superstric source terms
used to extract physical quantities from the action.
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s N

Figure 5. Metallic quantum dot coupled to a superconducting lead.

lead hasV propagating modes. The quantum dot is a small metallic region with
D/L? > N§.° The energy scale that determines the influence of the contact on
the properties of the dot is the inverse of the time taken for an electron in the do
to feel the contact. This defines the generalized Thouless energ\aj88for the
guantum dot, this scale is set B§ (modulo factors relating to the transparency
of the lead). In a large dot witlh/L? < ¢ the diffusive motion of the electrons
would set this scale.

A naive expectation is that this problem should involve the solution of the
Usadel equation as before, with the right boundary conditions. Thesadmnsid-
erations show this not to be the case. Witi L? the largest energy scale in the
problem, gradients of) are frozen out of the action. One must explicitly include
the coupling to the leads from the outset, as the saddle point will be determined
by the competition between the energgnd this coupling (of ordeNd) in the
action. D/ L? will appear nowhere. Put simply, the gradient expansion is not the
true low-energy action in such a confined geometry.

Unfortunately, a fully microscopic derivation of the correct form of tleeaz
dimensional (that is, containing no spatial gradients) action is laboriojs\{&r
can get to the answer more directly by using the general principle that the ze
dimensional limit of the action describes the appropriate random matrix model,
or equivalently, that the quantum dot system in the li@itL? > § may be
modeled by random matrix theory with matrices of side— oo, as described in
section 1.4. The random matrix model for the dot is simply a Gor'’kov Hamiltonian
(3) with A = 0 — the dot is normal — and/ given by an appropriate random
Hamiltonian with mean level spacirdgfrom the orthogonal symmetry class. The
non-trivial element is the coupling to the leads. The standard approdtis[®

® This includes the case of a ballistic chaotic quantum dot, provided the erjogicthe time
required for an electron to explore the available phase space) is mupdr lthvan the dwell time of
the electrons in the dot.

sinons. tex; 1/04/2002; 17:46; p.24



PHASE COHERENCE PHENOMENA IN SUPERCONDUCTORS 283

write the lead-dot coupling as
N dk , ,
i = 3 [ 55 Wai(laup) k.ol = lo, )Gk, bl) +he) . (32)
7o

In this expressiofw, n) with n = p, h denotes a basis of the random matrix model
for the dot, andj, k,n) is the obvious basis for th¢ = 1... N propagating
modes of the lead. Though this coupling is formally the same as a tunneling
Hamiltonian it is capable of describing contacts of arbitrary transpareriity w
proper interpretation of the coupling®.,;. It is possible to show that the dot can
be described by the ‘effective Hamiltoniat?,

ﬁeff = ﬁo_gh - Z.71—1/I/VI/VTgbcs(6) )

whereg,s is defined in Eq. (18). Itis this structure that is needed in the derivation
of the zero-dimensionat-model. By expanding only ia in the ‘strln’ form of
the action (23) one arrives at
ImE_ 1
S[Q) = st [o5f @ 08"Q) — 5 Yo str (1l + 0;Ques@)] . (33)

20 2 <
J

where Qs is used to denote the bulk BCS saddle-point found in the previous
section. In the above we have takBniW' to be theM x M diagonal matrix
diag{ai,...,an,0,...,0}. (33)is the proper form of the-model for a quantum

dot with superconducting leads. It was first used by [35] in their invastg of

the class C spectral statistics of such a device. Since we are typically teteres
in energies of the order of the level spacing, the order parameter makée ta
to infinity so thatQy.s = a{’h. We will specialize at this stage to the caseMof
perfectly ballistic contacts, so that all, = 1.

As before, to obtain a mean-field expression for the DoS it is hecessary to
minimize the action with respect to variations gh Doing so, one obtains the
saddle-point equation

iTe_ cc ph N —1
_W[QaUS ®oy |+ E[Q’ (14 QbesQ) ™ Ques] =0
Applying the ansatz that the saddle-point solution is contained within the dibgona
parameterization (29), the saddle-point equation takes the form

_ . N hé
T ginhf + — 2, (34)
o 2 1+4isinhé

10 This has a well-defined meaning only within the context of a scattering appf@4]. For an

informal derivation, write down the BdG equations (2) for the whole syséad eliminate states
from outside the dot.
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We can straightforwardly determine that there is a ‘minigap;;, in the DoS by
settingcosh 6, to be imaginary. Thusinh 5 = —ib for realb and (34) gives

N6l [b—1
O =5ro\or1

The extremum of this function gives the largest energy correspondingeala
value ofb. This occurs ab = (1 + \/5)/2 = 1+ v, wherevy is the golden mean,
and yieldsEg,, = (N&/2m)7%/% ~ 0.048N4. With a bit more effort, one can
expand in the vicinity of,,,, to obtain

0 € < Fgap,

V(e) S R d
wLd A3

(39)

€ < Egap,

whereA, ~ 0.068N'/33.

Finally, we note that, in the opposite casecgfsmall, one can expand the
logarithm inc;. In the first order the action is just the same as for a BCS supercon-
ductor with gap(d/7) > ; ;. The formation of the minigap is a highly non-trivial
effect. Indeed, in Ref. [33], the integrity of the gap is proposed as rzagige
of irregular or chaotic dynamics inside the dot. A dot with integrable dynamics
appears to possess only a ‘soft’ gap in the DoS, with the DoS going to zero a
zero energy. It is no surprise that ‘diffusive’ SN structures, vehtétre gradient
action and Usadel equation are the appropriate description, also digpiajgap.

For a modern theoretical review of minigap structures in superconduotaréi
compounds, see Ref. [36].

This completes our study of the mean-field spectral properties of the hybrid
superconducting/normal system. In principle, these results could harerbe
covered without resort to the field theoretic scheme. To address the imperta
of mesoscopic fluctuations on the coherence properties of the sudentomg
system, we now turn to a bulk system which exhibits low-energy quasi-particle
excitations. Here we will require the full machinery of the non-lineanodel.

3. Superconductorswith magnetic impurities: instantons and sub-gap
states

3.1. INTRODUCTION

In section 1.2 we discussed Anderson’s observation that the thermoitypeop-
erties of ars-wave superconductor in the dirty limit are independent of the amount
of normal (non-magnetic) impurities added to the system. In the argument the
time-reversal symmetry of the single-particle Hamiltonian plays a prominent role:
pairing occurs between degenerate time-reversed eigenstates. Whesuerssl
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symmetry is broken we expect pairing to be disrupted and superconitiystiyp-
pressed. This can be achieved by applying a magnetic field or by adding mag
netic impurities. The effect is described by the classic theory of Abrika@sal/
Gor’kov [13] (AG), who considered the magnetic impurity case, thoughdthe
scription has a high degree of universality [37].

It is easy to see the importance of time-reversal symmetry from the Gor'kov

Hamiltonian
A H AoP
Hgorkov = (A*J;p —IA{2£)11> . (36)
ph

This differs from Eq. (3) through the introduction of the spin space (wahlP
matrices denoted:"). The Pauli matrixoy’ in the off-diagonal particle-hole
block reflects singlet pairing. We introduce scattering by normal and ntiagne
impurities through the simple model

A2
H=L2 ey W) +JS@) o™ . (37)

2m
In addition to the weak potential impurity distributié#i (r), the particles experi-
ence a quenched random magnetic impurity distribufiSir) where.J represents
the exchange coupling. The inclusion 88(r) evidently prevents the simple
diagonalization of (36) in terms of the single-particle eigen-energies asebef

AG solved the model defined by Eq. (36) together with the self-consistent

equation for the order parameter (4) in the self-consistent Born ajppation.
Their results are expressed in terms of the spin-flip scatteringlyatethrough
the natural dimensionless parameter

1
Ts|Al

(38)

The relation between /7, and JS(r) will be given shortly. In section 1.3 we
explained how a time-reversal symmetry breaking perturbation leads to phe su
pression of superconductivity (in the present madel, = 2/7,). This certainly

has the flavour of a mesoscopic effect: it depends on the loss of pilgakigyin

the single-particle wavefunctions as the time-reversal symmetry is brdkers,
however, of a ‘mean-field’ character. In this chapter we will see thatraptete
description of the DoS within the model defined by Eq. (37) necessitates the
inclusion of non-perturbative effects as well as the novel channetgiaftum
phase coherence discussed in the introduction.

11 This notion of phase rigidity can be made precise. In Ref. [38] the topdeameterp =
(I [ drl|) is calculated for the crossover from the orthogonal=¢ 1) to the unitary p = 0)
symmetry classes.
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3.1.1. Density of states

We saw that AG’s formula (11) followed from general considerations iaris
indeed universal [37, 4]. Quantities such as the quasi-particle Da8@eemodel
dependent. In the present model AG found that, remarkably, the sgxpneof
the gap in the DoS is more rapid than that of the superconducting ordenpara
eter (Fig. 6). They found a narrow ‘gapless’ superconducting ghagvhich the
guasi-particle energy gap is destroyed while the superconducting paceemeter
remains non-zero. This prediction was soon confirmed experimentally.

1.0
\ 5
= gl g
‘\ i % \§
- =
g RS
L o8
3
0.5
7
- /?4
7
7
G %
| ~ 7
0.0
0.0 0.5 1.0

2/t [

Figure 6. Variation of the energy ga@zap, and the self-consistent order parameltdf as a
function of (normalized) scattering ra®gr|A|. |A| is the order parameter &y, = 0.

This immediately presents two questions:

1. According to AG, the gap is maintained up to a critical concentration of
magnetic impurities (af’ = 0, 91% of the critical concentration at which
superconductivity is destroyed). Yet, being unprotected by the Andelse-
orem, it seems likely that the gap structure predicted by the mean-field theory
is untenable and must be subject to non-perturbative corrections. igvinat
structure of the resulting ‘sub-gap’ states?

2. The gapless superconducting phase has quasi-particle states altbdewn
to zero energy. These low energy states should be strongly affectelubloy
nels of quantum interference discussed in section 1.4. Where doesphe ga
less system fit into this classification and what are the consequencee for th
spectral and transport properties?

Once identified, the answer to the second question can be straightfoniard
ferred from existing studies of the relevant universality class. Herawvillebe
more concerned with answering the first question.

Sub-gap states in the magnetic impurity system have been discussed before.
Strong magnetic impurities [39-41] evidently lie outside the Born approximation
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used by AG. In particular it was shown that, in the unitarity limit, a single magnetic
impurity leads to the local suppression of the order parameter and creadesd
sub-gap quasi-particle state [39]. For a finite impurity concentration, tihése
gap states broaden into a band [40] merging smoothly with the continuum bulk
states.

We will argue that there is a mesoscopic view of this problem which is more
universal. Sub-gap states are those which are anomalously lackingse poil-
ity in the presence of a time-reversal symmetry breaking perturbation. ®hld c
be either an extrinsic or intrinsic effect. By intrinsic we mean that this is simply
what happens to some proportion of states of this random Hamiltonian when we
switch on such a perturbation. Alternatively, one can conceive of atnsic
mechanism: The AG theory shows the gap to follow the relation

Byap(r) = A (1 - ¢3)"? (39)

showing an onset of the gapless regior at 1 (note/ = 1 throughout). Even
for weak disorder, however, it is apparent that optimal fluctuationsesfahdom
potential must generate sub-gap states in the intérval ( < 1, thus provid-
ing non-perturbative corrections to the self-consistent Born apprdidmased
by AG. A fluctuation of the random potential which leads to an effectivenBor
scattering ratel /7] in excess ofl /75 over a range set by the superconducting

coherence length,
D 1/2
()"

induces quasi-particle states down to energi}ga%(fg).lz These sub-gap states
are localized, being bound to the region where the scattering rate is lage, s
Fig. 7. We will return to this picture later.

The situation bears comparison with band tail states in semi-conductors. In
this instance, rare or optimal configurations of the random impurity potergial g
erate bound states, known as Lifshitz tail states [43], which extend betobaitd
edge. The correspondence is, however, somewhat superficial:thhstates in
semi-conductors are typically associated with smoothly varying, nodeless wa
functions. By contrast, the tail states below the superconducting gap éntrodv
superposition of states around the Fermi level. As such, one expeassthgss to
be rapidly oscillating on the scale of the Fermi wavelength but modulated by
an envelope which is localized on the scale of the coherence léngtiis differ-
ence is not incidental. Firstly, unlike the semi-conductor, one expects #rgyen
dependence of the density of states in the tail region below the mean-field gap
edge to be ‘universal’, independent of the nature of the weak impuritgitalion

12 Similar arguments have been made by Balatsky and Trugman [42].
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Figure 7. Mechanism of extrinsic sub-gap state formation.

but dependent only on the pair-breaking paraméete®econdly, as we will see,
one can not expect a straightforward extension of existing theorieg 4 ®f the
Lifshitz tails to describe the profile of tail states in the superconductor.

3.1.2. Outline

In this chapter, following Refs. [45], we will first show how to extend the-s
tistical field theory described in chapter 2 to incorporate scattering by nmiagne
impurities. As anticipated in the previous chapter, a saddle-point approximatio
recovers the mean-field theory of AG. We discuss the soft-modes oftibe &tat
exist in the gapless phase and determine the consequences of thedanaels

of interference. In section 3.4, with the field theory in hand, we turn tolprob

of the sub-gap states. We find that these are described by instantoresfiafidh
theory; we identify the profile of the instanton with the envelope modulating the
guasi-classical sub-gap states. A careful analysis allows us to eviheaselb-
gap density of states with exponential accuracy. In section 3.5 we exangine th
zero dimensional limit and prove a recent universality conjecture [4€].néxkt
discuss the universality of thé > 0 problem in the context of other realizations
of gapless superconductivity.

3.2. FIELD THEORY OF THE MAGNETIC IMPURITY PROBLEM

Incorporating the additional structure of (36) into the field theoretic detson
obtained in the previous chapter is straightforward. As before one $tamsthe
generating functional

Z[J] = /D(z/_z,w)ef dr (iTZ(HGorkov_G—)w+TZJ+jw)’ (41)
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wheree_ = ¢ — 0 and the supervector fields have the internal structure:

(V1 )y b)), T = (Y1 ¥y ¥y ¢)). As in chapter 2 we will only be concerned
with the average of a single Green'’s function.

3.2.1. o-model action
For clarity it is desirable to remove thg” from the off-diagonal terms in Eq. (36).
To do this, we perform the rotation — ' = U, ¢ — 1)’ = UT with

1 0
U: <0 . sp> 5

after which the Gor’kov Hamiltonian takes the form

~2
Hgorkov = <§—m +W(r) - €F> ® b+ JS(r) - o + |Alo" .

Since, in the following, the global phase can be chosen arbitrarily, ther et
rameter can be chosen to be real. The unusual phase coherenegipsopf the
superconducting system rely on the particle/hole or charge conjugatiomstry

2 o ph sp iy Sp ph
HGorkov = —0y ® 09 HGorkova2 ® O3 - (42)

As before, one can include all channels of interference by furtheblittg the
field space as in chapter 2. Rather than present all the intermediate stegisew
only the symmetry relation o9, the Hubbard-Stratonovich field introduced to
decouple the average ov@r. In this case

Q= all)h ® U;p’yQT'y_lalfh ® ng , (43)

where now, in contrast to Eq. 21, we have defined

Z‘O.CC
vzllph@( 2 UCC) :
1/ bf

We will see presently that, when there are quasi-particle states at lowyeinerg
the present system, their localization properties are radically differenbsetbf
systems in the previous chapter. It is through this reiwat the distinction enters
the present formalism.

Turning to the magnetic impurity scattering due to the&(r) - o°P term, we
use the Gaussian model specified by zero mean and variance

(TSa(®)TS5(¢)) g = ———6%(r — ')bus | (44)

6TUT,
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where1/7, is the spin flip scattering rate introduced earfi@Averaging yields
the term in theV field action

<exp [i/dr\IJJS(r) : O'Sp‘if} >JS = exp {— oo, /dr Vo PW) ] . (45)

The interaction generated by the magnetic impurity averaging can be tre&ied [2
by performing all possible pairings and making use of the saddle-poimbzipp
mationQ(r) = 2(¥(r) ® @(r)a§h>q,/7ru. This leads to the replacement

_ 2
/dr (\IIUSIO\IJ)2 /dr str Qaph ®aSp) i

Such an approximation, which neglects pairings at non-coincident poiats is
lowed by the strong inequality /¢)¢ < 1. In addition we discard the contraction
(Uo*PW)y. The term generated by this procedure could in any case be decoupled
by a slow bosonic field(r) which would immediately be set to zero for the
singlet saddle-points that will be the basis of this section.

Gaussian in the field¥ and ¥, the functional integration can be performed
explicitly after which one obtain&Z[0])y s = [ DQ exp(—S[Q]) where

127vTs 47'3

/dr [str Q* - %str In (03 (Ho — e_05) + Q>

yZ
24

(QuE" © o) ] .
From this point, ther-model follows precisely as before
Q== /dr str [D(VQ)? — 4i (e_o§° + |Alo5") o2"Q

1 ph sp 2
—3—78(6203 ®0 ) ] (46)

The saddle point manifold is given 6y = TQ., T, with Qs = 05" ® o§¢
andT chosen to be consistent with (43). The quasi-particle DoS is obtained from
the functional integral

v cC
(v(e,r))vs = ZRG <str (03 ® ob b o5°Q(r )>>Q 47
The numerical factor leads to a DoS 4f for the system ag| — oo. This is
because both the particle-hole structure of the original Bogoliubov Hamitionia

13 Following AG, we take the quenched distribution of magnetic impurities to besial’ and
non-interacting throughout — indeed, otherwise our method would nplydp its present for-
mulation. For practical purposes, this entails the consideration of stasctuere both the Kondo
temperature [47] and, more significantly, the RKKY induced spin glaspeeature [48] are smaller
than the relevant energy scales of the superconductor.
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and the spin each cause a doubling of the DoS. With the appropriate extefsio
theo-model in hand, we should now check that the mean-field description of AG
is recovered at the saddle-point level, as anticipated.

3.2.2. AG Mean-Field Theory
Variation of theos-model action with respect to fluctuations @f obtains the
Usadel equation

DV (QVQ) +i[Q e-05 @ 0"+l Ao}
1
+— Q08" ©0PQoY" @ 0| 0. (48)
675
With the ansatz
Qsp = [agc ® 0P cosh § + io?" sinh é} ® 1°P, (49)

where the elements = diag(01,10)ys are diagonal in the superspace, the saddle-
point equation decouples into boson-boson and fermion-fermion seatattakes
the form

V20 +2i <coshé - ﬁ sinh é) — (sinh(20) =0 . (50)
As explained in section 2.2 we take= 6, 1" and spatially constant to recover

the results of the usual Usadel theory [24] for this problem. Together thith
self-consistency equation (31) we hite

0 = esinh @ — |A|cosh 6 — — sinh(26;),
Ts
Al = —iﬂ')\/ de sinh 0 (e). (51)

The saddle-point equations (51) can be solved self-consistently fotjoiven
procedure outlined, for example, in Ref. [37]. Setting € — (1/27,) cosh #; and
|A| = |A|+ (1/27,) sinh 0}, the saddle-point equation for each energgkes the
form €sinh 6; = |A|cosh 6; = 0. Settingt = ¢/|A| and recalling the definition
¢ = 1/75|A|, one obtains

(=)
V=0 =01l -C—F/—=].
A 1— 02
To reiterate, the latter equation should be regarded as a self-consighatiirs
for © from which one can obtaid = arcsin(1/v/1 — ©?). The corresponding

14 Here we work at zero temperature.
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self-consistent equation for the gap parameter then takes the form

1

Although there is no simple closed analytic expression for the solution of the
mean-field equation, much is known about its form. In particular, the system
exhibits a transition af = 1 from a gapped to a gapless phase. In the gapped
2\ 1/2
phase, i.e. fot < 1, the gap edge is fixed by the solutiog,, = (1 - C2/5) / :

3/2
from which one obtaing’,,, = A (1 -3 " A numerical solution for the

AG DosS for various values of the dimensionless paramgtershown in Fig. 8.

2

DoS v (g)

e/lAl

Figure 8. Average DoS as obtained from the Abrikosov-Gor’kov mean-field théar ( = 0,

0.1, 0.5, 1, 1.3 andoo. Note that for¢ > 1, the system enters the gapless phase with the DoS at
€ = 0 non-vanishing.

Turning to the self-consistent equation,/at= 0, the gap equation can be
written in the form,

WD (e 1
1=-\ —_——
/0 |A] (1 + 22)1/2

Changing the integration variable frosmo U, the gap equation assumes the form,

1= [ ! !
- /171 U{ _C(1+52)3/2 1+ 02)1/2

where the lower limit is defined by

0 ¢<1,
T e >
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The integration can be performed analytically and obtains the solution,

I A\ %6 (<1
n <A) ~ —arccosh( — % (C arcsin(1/¢) — (1 — 1/@)1/2) ¢C>1

whereA is the order parameter fgr= 0. For small¢, A decreases linearly,

The onset of the gapless region occurs whea 1. At this point, A = Ae~"/4,
from which one obtaind /7, = Ae~"/4. Using the fact that superconductiv-
ity completely disappears whelyr, = A/2, one finds that the gapless region
arises at 91% of the critical impurity concentration [13]. The variation os#lé
consistent order parameter and quasi-particle energy yith|A| is shown in
shown in Fig. 6.

3.3. PHASE COHERENCE EFFECTS IN THE GAPLESS PHASE

Having determined the homogeneous solution of the mean-field equation we now
turn attention to influence of fluctuations. As in the time-reversal invariatit bu
s-wave superconductor, in the gapped region of the phase diagratuations

are rendered massive by the energyHere the fluctuations serve only to pro-
vide a small renormalization of the mean-field DoS above the gap. However, in
the gapless phase, quasi-particle states persist to zero energy. In thisdimé,
fluctuations become soft.

More precisely, in the limit — 0, the mean-field solution (49) to the saddle-
point equation (48) is not unique: here the saddle-point equation admitstiae
manifold of homogeneous solutions parameterized by the transformafioas
TQspT~! whereT = 1, ® Ly, ® t andt = (¢~ )Ty~ soft fluctuations
of the fields, which are controlled by a non-lineamodel defined on the group
manifold 7" € OSp(2|2)/GL(1|1). This corresponds to symmetry class D in the
Altland-Zirnbauer classification scheme discussed in section 1.4. This igrno s
prise as this class corresponds to Gor'’kov Hamiltonians with broken tinersalv
and spin rotation symmetry. The massless fluctuations control the low-energy
long-range properties of the gapless system giving rise to unusudizbtoan
and spectral properties.

Taking into account slow spatial fluctuations of the fields

Q(r) = T(r)QupT !(r) = (sinh 6;6™ + cosh 6; 05" Q4(r)) @ TP,

whereQ;(r) = T(r)o§°T~1(r), one obtains the soft mode non-lineamodel
action

Sq, = —%V /dr str {DS(VQS)2 — 4ieSJ§CQs} , (52)
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whereD, = D cos? §; denotes the effective diffusion constant, and-= ¢ cosh 6;
represents the (potentially complex) energy source. The mean-field sctiosice-
fore brings about an energy dependent renormalization of the coupimgtants
in the non-linearw-model action. We emphasize that, these constants aside, the
form of the soft-mode action (by which we mean the structure of the saduite-p
manifold) — and therefore low-energy behaviour — is entirely determinethdy
symmetry of the original random Hamiltonian. In the present casetheatrix
relation (43) follows from the symmetry (42) of the Hamiltonian. This point of
view is most elegantly put by Zirnbauer [17]. Fortunately extensive aimlyf
class D through the action (52) exists in the literature [49-52], and we &&n ju
guote the results. These fall into two categories

Thermal transportSince neither charge nor spin are conserved in the original
Hamiltonian, novel effects with be present onlythermaltransport by quasi-
particles. A standard perturbative RG analysis of (52) yields for 2D tve fl

dg(L) 1

dInL/t) =2’

g now gives the thermal conductivity, and we see that transport is metatlieeth
the differing behaviours of classes C and D can be attributed to the following
observation [50]. Friedan’s [53] general result on the one-I@efpinction of a
o-model in 2D shows that the flow is determined by the curvature of the field
space. The differeny matrices used in this chapter and the last indicate that
moving from class C to D involves switching the manifolds of the boson-boson
and fermion-fermion sectors, which reverses the curvature (in theoppate
superspace generalization) and leadartt-localizationin the class D case.

Spectral propertiesOne of the common features of the superconductor uni-
versality classes [16] is non-stationary behaviour of the DoS due to thia-dis
guished position of = 0. The correction to the mean-field (AG in our case) DoS
can be calculated in perturbation theory fes| > E. = |D4|/L?. In the 2D case
we have

1 d?q 1
= ho; |1+ —
v(e) Re v cosh 6, < + p— / (2r)2 Dug? — 2i€s>

1 D, \?
= shé; [1+ ————In |1 . (53
Re v cosh by ( + 872D, cosh? 6, t ( + <263€2> >> (53)

For |es| < E., the action is dominated by the zero spatial mode, which must be
integrated exactly. This is the universal limit, and the result should coincitthe w
the average DoS of a random matrix ensemble with the class D symmetry (see
section 1.4). The resultis [16, 50]

sin(27re/6)]

v(e) =v(E.) {1 + 2me)s
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wheres = 1/v(E.)L? represents the average energy level spacing at erdgrgy
This accounts for the RG scaling from the microscopic scale to the Thouales s
E. suggested by (53).

Thus, according to the class D field theory, the DoS obtained from the AG
mean-field should be modulated by a logarithmic divergence at low energies w
is cut on the scal&... Below E.., the modulation should be universal correspond-
ing to the random matrix result. In particular,&@ — 0, the DoS should exhibit
a jump by a factor of two.

This completes the formal description of the bulk superconducting phase. T
solution of the AG mean-field equation provides an adequate descriptiom of th
bulk extended states. New channels of quantum interference aréxekioy soft
modes in the gapless phase with dramatic consequences. This answertit: s
of the two questions posed in the introduction. Now we move onto the first: the
sub-gap structure in the gapped phase.

3.4. INSTANTONS AND SUB-GAP STATES

Although the reduction and eventual destruction of the quasi-particlgyggap
predicted by the AG mean-field theory can be reasonably justified on puimgsy

ical grounds, the integrity of the gap of the ran@e< ¢ < 1 is less credible.
Once time-reversal symmetry is broken and the protection of Andersatsdam

is lost, there remains no reason why a sharp gap should persist. Add toehis th
observation that the spin scattering rate must be subject to spatial fluctfadions
the average valuk/7,, and one concludes that corrections to the DoS predicted by
the AG theory must lead to the appearance of sub-gap states analogtasto “
tails” in a disordered semiconductor [43, 44].

This analogy is of course not new [42, 54] nor, as far as practidallzion
in the present formulation is concerned, is it particularly deep. This isusecall
averages have already been taken, so we can not look for an optictaktion
of some potential, as in the classic approaches to the study of band tail states
in disordered semi-conductors [44]. However, these studies hintvatohe can
proceed.

Band tail states in semi-conductors can be studied within the same functional
integral formulation. In particular, the generating function of the singltigia
Green function of a normal disordered conductor can be presented forth of
a supersymmetric field integral

Z[0] = /D(\P,\I/)exp [i/dr\ll <e+ - % - W(r)) \II] ,

where, once again, the random impurity distribution is drawn from a Gaussia
o-correlated white-noise impurity potential. The optimal fluctuation method in-
volves minimizing the action with respect to fluctuations in the fieldsand
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potential . This involves seeking inhomogeneous solutions of the non-linear
Schiddinger equation

2m

(e—f)—g—W(r)>\IJ:0,

where the corresponding optimal potential is determined self-consistentheby
relationW (r) = —|¥(r)|?/27v7. In the supersymmetric formulation, band tail
states are identified with ‘supersymmetry broken’ inhomogeneous solutitimes o
saddle-point equation (see Cardy [55] and Affleck [56]). Inde¢led,anticipated
exponential suppression of the DoS necessitates a breaking of wupeesry to
support a finite action. Here the phrase “supersymmetry breaking” is{altg
misleading. We use it only to refer f@eld configurationsubiquitous in the prob-
lems under discussion here, that do not respect the parity betweemBb&ermi
degrees of freedom. However, any such configuration is just one nrexhheale-
generate manifold differing by supersymmetric transformations. The lattermain
tain the invariance of the generating functio&d0] under global supersymmetric
transformations.

What does this tell us about the identification of optimal fluctuations and
sub-gap states in the superconductor? Following the analysis abovejighe
guess that sub-gap states are associated with inhomogeneous ctinfiguo&
the U field action. However, we anticipate that optimal solutions corresponding
to sub-gap states are localized on a length scale in excess of the sijustoom
coherence length. In the dirty limi§, > ¢ > Ap, this implies that the localized
sub-gap states are quasi-classical in nature. Their existence on thefldwe ¥
field action will be buried in the fastyz oscillations of the wavefunction. To reveal
the sub-gap states, we must first remove the fast short length scaleafiactu
of the quasi-classical Green function and look for an equation of motioth&
slowly varying envelope of the wavefunction. But this is just the prograthe
usual quasi-classical scheme.

The term “sub-gap states” is a little misleading in this context. Band tails are
bound states of some rare potential that sit by themselves below the bulk of the
spectrum. Each rare configuration that make the gap soft in the pressninall
give rise to many states beneath the AG gap. Thus the term “gap fluctuatsexal’, u
in Ref. [46] to describe the zero dimensional SN system, may be more ajgteopr

As well as being quasi-classical in nature, the existence of sub-ga state
is not affected by working in the dirty limit. As such, their existence must be
accommodated in the non-linearmodel functional (46) since the validity of
this description relied only on the quasi-classical parameter > 1 and the
dirty limit assumption. To identify sub-gap states in the present formalism, we
should therefore investigate inhomogeneous solutions of the low-enadgles
point equation i) — the Usadel equation [25]. Such a solution should be thought
of as defining an envelope for the quasi-classical sub-gap states.
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Therefore, let us revisit the mean-field equation and look for inhomagene
solutions at energies< Eg,p,. To focus our discussion, let us begin by restricting
attention to the quasi one-dimensional geometry. To stay firmly within the diffu-
sive regime, we therefore impose the requirement that the system &igenuch
smaller than the localization length of the normal systegm, ~ z/diD, where
d | is the wire diameter. Later, in section 3.4.3, we will generalize our discussion
to encompass systems of higher dimension. Furthermore, since, over tivalinte
0 < ¢ < 1, the quasi-particle energy gap varies more rapidly than the supercon-
ducting order parameter, we will neglect self-consistency of the ordempeter.
Taking self-consistency into account will not alter our qualitative findiraqsl
will only weakly affect the quantitative results.

3.4.1. Instantons in the Quasi One-dimensional Geometry
To investigate inhomogeneous solutions of the mean-field equation (50) it-is co
venient to recast the equation in terms of its first integral

(6$/§é)2 + V(0) = const, (54)

where

V(0) = 4i <sinhé - i cosh é) — Ccosh 26
denotes the complex potential. Let us denotefly: the values ofd; andif
at the conventional saddle point, and focus on an energglow the gap pre-
dicted by the AG theory. Herém 0,c = w/2 such that the mean-field DoS
vac(€) = 4vRe cosh O vanishes. The corresponding valueRaf 0, depends
sensitively on the energy, witRe 65c = 0 for e = 0.

Considering the boson-boson sector only, if we require fhat — +oo) =
fac, what kind of inhomogeneous solution is possible? The valués af which
0,01 = 0 can be identified by considering the complex (dimensionless) potential
functionV(#;) from which we can determine the endpoints of the ‘motion’ in the
complex plane, just as one would use a real potential normally. By inspexntmn
may see that, on the lirffen 6, = 7/2, the potential is purely real. This is not the
only contour wherdm V = 0, but, by considering forces, it is not hard to see
that eithedm 0, = /2 always during the motion, ah follows a trajectory with
an endpoint atm 6; < 0. For reasons outlined below, we will discount this latter
possibility. The former case amounts to considering “bounce” trajectoridin
real potentialV (ir /2 + ¢) = V;(¢) where

€

Vi(p) = —4 (coshd) - Al

sinh <;5> + ¢ cosh 2¢. (55)

A typical potential is shown in Fig. 9.
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Figure 9. PotentialV,(¢) = V(ir/2 + ¢) for ¢/|A| = 0.1 and¢ = 0.2. The AG saddle point
corresponds to the central maximum. The saddle point magkeds used in the analysis of the
zero-dimensional problem (section 3.5).

Now integration over the angléss constrained to certain contours [27]. Is the
bounce solution accessible to both? As usual, the contour of integratiothave
boson-boson field; includes the entire real axis, while for the fermion-fermion
field, 0 runs along the imaginary axis fromto iw. With a smooth deformation
of the integration contours, the AG saddle-point is accessible to both thesang
6 [10]. By contrast, the bounce solutiand the AG solution can be reached
simultaneously by a smooth deformation of the integration contoly for the
boson-boson field; (see Fig. 10). The bounce solution is therefore associated
with abreaking of supersymmetaf the level of the saddle point.

Thus we have identified an inhomogeneous saddle-point configuration fo
which the supersymmetry is brokef; executes a bounce whil# remains at
the mean-field valuéag. The symmetry broken solution then incurs the (finite)
real action

S = 4z Ly (D|A])2S4(¢/|Al, )

where, definingy’ as the endpoint of the motion,

(z)/
So= [ do\Vi(6a0) ~ V(o) (56)
JNe!

Now, as mentioned above, there exists a second possibility for a boulnee so
tion in which one moves away fromw ¢ parallel to the imaginary axes. Indeed,
such a solution would seem to be a natural candidate for the fermion-fermion
field i0. However, since the endpoint for this trajectory lieRatf < 0 outside
the integration domain which runs frobrto =, this would seem to be excluded.
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Figure 10. Integration contours for boson-boson and fermion-fermion fields éncbmplexd
plane. The bounce solution fer= 0 (labelled as ‘b’) is shown schematically.

As ¢ approachegy,,,, from below, the potential (55) becomes more shallow,
with the maximum merging with one of the minima when we reach the gap. Near
the edge, up to an irrelevant constant, an expansion of the potential erpoiv
(¢ — Pac) leads to the cubic form

Eoop — €

1/2
Vild] =~ —a (T> (6 — dac)? + B(6 — dac)® (57)

where the dimensionless coefficients are specified by

i (E) T () e

Note that, making use of Eq. (39), both of these coefficients depend swiely
the dimensionless parameterFrom this expansion, one can obtain an analytic
solution forS. To leading order i Eq,p, — €)/|A] one finds

_ 4 adn (Egap - €>5/4 (59)
715 52\ A ‘

Note that the action vanishes exactly at the gap. For completeness we give th

explicit form of the bounce solution

« 1
() — pac = Bm )
where the extent of the instanton is set by
1/4
3 A
ro(€) = i ( . (60)

Egap — €

Indeed the size of the instanton is easily understood from the quadratfnéssf
term in Eq. (57). Thus one finds that, while the overall scale is set by {ersu
conducting coherence length the size of the localized region diverges both as
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¢ approachedz,,, and, noting thatx ~ (1 — ¢?/3)!/4, as one approaches the
gapless phas¢ — 1.

This completes the analysis of the saddle-point solution together with the cor-
responding action. However, as this level we are presented with twaéepnsb

1. The contribution of a second saddle point would seem to spoil the noemaliz
tion condition(Z[0])y. s = 1, which should be preserved within the saddle
point approximation;

2. Confined to the liném 6 = /2, when substituted into the DoS source (47),
the bounce configuration does not appear to generate states!

The resolution of both problems lies in the nature of the fluctuations around the
symmetry broken mean-field solution. These field fluctuations can be segara
into “radial” and “angular” contributions. The former involve fluctuatiorfstoe
diagonal elementd, while the latter describe rotations including those Grassmann
transformations which mix the bf sector. Both classes of fluctuations playcetr
role.

3.4.2. Fluctuations

Let us outline qualitatively the influence of the fluctuations around the meé&h-fi
As usual, associated with radial fluctuations around the bounce, thete @zero
mode (due to translational invariance of the solution), and a negativgyemede.
The latter, which necessitatesn&2 rotation of the corresponding integration
contour to follow the line of steepest descent (c.f. Ref. [57]), has fffecrts:
firstly it ensures that the non-perturbative contributions to the local De®an-
vanishing, and secondly, that they are positive. Turning to the angutaunétions,
the breaking of supersymmetry is accompanied by the appearance afsnairan
zero mode separated by a gap from higher excitations which restoretotiad g
supersymmetry (c.f. spin symmetry breaking in a ferromagnet of finite extent)
The zero mode ensures that the symmetry broken inhomogeneous sauhdle-p
configurations respect the normalization condit{&{0])y s = 1.

A careful analysis of the fluctuations to formally check all these features is
contained in Ref. [45]. The result is that, taking into account Gaussietuétions
and zero modes, one obtains the non-perturbative, one instanton ototribo
the sub-gap DoS:

%N (—i|K]) /da:i(sinhd)(x)—sinhqﬁAG) Iwa(w’)IQ@

X exp [—47TI/LW\/DA|S¢

where the factog/ LS4/¢ represents the Jacobian associated with the introduction

of the collective coordinate [57};¢| K| is the overall factor arising from the non-
zero modes, and the Grassmann zero mode wavefungfjas normalized such

; (61)
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that [ dx|p, |*> = 1. Eq. (61) is the main result of this section. Note the non-
perturbative nature of the result, both in the coupling constahbf thes-model,
and the (dimensionless) spin scattering rate

3.4.3. Sub-gap States in Dimensiohs< d < 6
The calculation above was tailored to the consideration of the quasi oneslime
ional geometry. The generalization to higher dimensions follows straigrefoiiy
In particular, it is necessary to seek inhomogeneous solutions of theegaoidt
equation (54) where the gradient operator must be interpreted as ther liigh
mensional generalization. Generally, this equation must be solved numerically
However, for energiesin the vicinity of the gapF,.,,, an analytic expression for
the energy scaling can be obtained dot: 6.°

Using the approximation to;[¢] (57) valid when(Eg., —¢)/|A| < 1, the ex-
ponential dependence of the sub-gap DoS can be deduced in highas@imén
this limit, dimensional analysis of the cubic equation of motion yields the scaling
form

6(r) — pac(e) = %f(r/m) :

whererg is the characteristic length defined by Eq. (60). When substituted back
into the action, one finds that the DoS depends exponentially on the parameter

4mg(€/L)* S

0 = aa 21 - yerars (Bom ) o (62)
Hereg = vDL% 2 denotes the bare dimensionless conductance of the normal sys-
tem, andag is a numerical constant{ = 8 41/24/5). In particular, the exponent
depends linearly on the energy separation from the gap in two dimensions.

Having completed this calculation, it is interesting to explore the connection

of the results presented above to related problems in the literature. THingsu
expression for the DoS (62) is non-perturbative in thenodel couplingl/g,
which measures the strength of non-magnetic disorder. We note that atiier n
perturbative results in disordered systems have been obtained by liektetton
calculations. As well as the investigation of tail states in semi-conductorsg55]

15 The importance ofl = 6 is the following: the intuition from the quasi one-dimensional prob-
lem is that since the potenti&l becomes more shallow as— E_,,, the action for the instanton
is well approximated by retaining only those terms due to the cubic poten#ial This is correct
in d < 6 because the instanton found using the truncated potential have an actigartishes as
e — Eg.,, and it is clear that the ‘remainder’ of the action evaluated on this instarstnisives
even more rapidly. Fod > 6 this procedure fails and no truncation of the potential is possible.
Effectively the potential i3} ~ (exp(2|¢|) and no instanton solutions exist. Thus tbr> 6 the
mean-field gap is hard.
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supersymmetric field theory was developed by Affleck [56] (see alse. R&8])

to investigate tail states in the lowest Landau level. There it was shown that tail
states correspond to instanton configurations oflthigeld action(c.f. Ref. [55]).

Itis also interesting to compare the present scheme with the study of ‘anastyalou
localized states’ [59] (see also, Ref. [60]). There one finds thatiiong current
relaxation in a disordered wire is also associated with instanton configusaifon
the o-model action. Finally, a Lifshitz argument has been applied on the level of
the Usadel equation in the study of gap fluctuations due to inhomogeneities of th
BCS interaction [64].

3.5. ZERO DIMENSIONAL PROBLEMS AND UNIVERSALITY

In the previous section we considered the instanton contribution to theagub-g
DoS in the infinite system. For completeness let us now consider the zero dimen-
sional case that obtains wheg the size of the instanton, exceeds the system size
L, which will happen whem approaches close enough#g,;, from below in any
finite system. In this limit one can clearly not fit an instanton inside the system.
Leaving aside the practical relevance of this situation, theoretical motivigion
provided by a recent paper [54] that explored this regime using a ramdatrix
analysis.

However, before turning to the consideration of the zero-dimensional liimit o
the present problem let us first try to draw some intuition from a system tirad tu
out to be closely related. In section 2.3.1 we discussed the propertieoahaln
guantum dot contacted to a superconducting terminal (Fig. 5). Therawéhat
near the gap edge the DoS of the dot takes the singular form

1 € — Egap

> F ~ ,
l/(€ gap) 7TLd Ag

(63)
However, the location of the gap edge relies on a mean-field analysis abthe ¢
pled system. In Ref.[46] Vaviloet al. have argued that optimal fluctuations of
the impurity potential give rise to gap fluctuations. The hypothesis introdimced
Ref. [46] is that the spectral statistics near a gap edge are univelsslallows

a random matrix theory analysis of gap fluctuations and leads to the following
expression for the sub-gap DoS,

3/2
V(e < Egap) 2 Egop — €
T —Ag . (64)

Now the AG mean-field solution for a superconducting quantum dot with mag-
netic impurities also predicts the existence of a square root edge (se83)Q. (
Then, when recast in the form of Eq. (63), itis pertinent to ask whetigeexpres-
sion for the sub-gap DoS coincides with Eq. (64) in the zero dimensional limit.
This is the situation addressed in Ref.[54].
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In the following we will show that the universal result (64) is explicitly re-
covered by the present theory. Moreover, in doing so, we will expleserigin
of the universal structure reported in Ref. [46] and describe its implicatfor
universality of thed > 0 problem.

3.5.1. Superconducting dot with magnetic impurities
Let us therefore consider explicitly the action of a superconducting gmaiine
presence of a weak magnetic impurity potential. Whgn> L only the zero
spatial mode contributes significantly to the action (46). In this limit, the action
assumes the zero dimensional form
1T T

S[Q] = 255t [(e_agc + |A\a§h) aghQ} + Sy
where, as usualj denotes the single-particle level-spacing. As in the higher di-
mensional problem, a variation of the action with respe@ tabtains a mean-field
equation, now without spatial variation. Parameterizing the saddle-paiatieq
as in section 3.2.2, we obtain the zero-dimensional Usadel or AG mean-field
equation (50)

str (Qa};h ® aSp>2 , (65)

2i (coshé - ‘%' sinh é) — (sinh(26) = 0.
From this equation, we can identify the usual AG solution which in turn rasove
the AG phenomenology.

The inclusion of bounce configurations in the previous calculations wseslba
upon the observation that, although the contribution they make is exponentially
small, they are the least action configurations on the part of the contour that
gives a finite sub-gap DoS. In the zero-dimensional case we aredspaveng
to think about the problem in function space. The action is proportional to the
potential of Fig. 9. The correct contour thus passes through the maxirfitine o
potential (minimum of the action) corresponding to the usual AG saddle point,
and turns away from the real axes (i.e. the lindm 6; = 7 /2) at the minimum
of the potential (marked in Fig. 9 &g4). This part of the contour, parallel to the
imaginary axes, gives a contribution to the DoS, and the second saddtegoin
in fact amaximumon this portion by analyticity. Following the same arguments
as in section 3.4.1, this solution is inaccessible to the fermionic contour. Thus we
find that the sub-gap DoS in the zero dimensional case is given by

v(e < Egap) A

o) exp [l (M6s0) — Vitow)| (66)

As before analytic results may be obtained near the gap edge using the cubic
potential (57). We find

Poa(€) ~ daa(e) + z—g\/ %,
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which leads to the sub-gap DoS néay,, scaling as

v(e < Egap) ~ exp l_‘l_ﬂﬂo‘_?’ (Egap - 6>3/21
v 27 § 32 |A|
We note that the general result for the energy dependence of thaexparitten
down in section 3.4.3 for dimensiods> 1 applies also forl = 0.
To establish contact with the universal result given in Eq. (63) it is lkklpf
recast the result in a modified form. To do this we note that, in the vicinity of the
mean-field gap edge, the DoS can be expanded as [37]

VAG (€ > Egap) \/5 —2/3 2/3\—1/4 (6 - Egap>1/2
VAGLE ~ Zeap) /2 1— " Zeap ) ©
- 2 - ¢ i

Then, if we define

47 2
A-3/2 = 2T —2/3(1 _ 2/3)-1/4
= e

the mean-field DoS can be brought to the form of Eq. (63), and the aplgS
takes the universal form

3/2
v(e < Egap) 4 [Egap —¢
—,  ~ep (-3 7Ag . (67)

Taking into account the particular convention for the definition of the ¥otBe
sub-gap DoS obtained above coincides with the universal expredsioynsn
Eq. (64).

Away from the mean-field gap edge, we can in principle obtain an exact
expression for the exponential dependence of the sub-gap DoShiggsthe
saddle-point equation far;(¢ac) andV;(¢poq) explicitly. However, such a pro-
gram can not be performed analytically. However, the asymptotic depeade
of the DoS tail far from the mean-field gap can be obtained by developing an
asymptotic expansion ig. In doing so, we can establish contact with the results
of Ref. [54]. Taking¢ < 1 and keeping terms at ordér! and¢? in the potential
V: one finds that s coincides with the BCS solution at leading order and
moves to the larger value

¢oda(€) ~ In (2‘?A‘_<6> .

16 We note that the factor & discrepancy between the result here and that presented in Ref. [46]
can be straightforwardly accommodated into a redefinitioztgig/ % or, equivalently, a rescaling
of the mean-field DoS. For reasons outlined in the text, we believe that tiverition adopted here
is the consistent one.
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EvaluatingV; (¢ac) andV;(¢poq) and substituting in Eq. (66) gives the result

v(e < Egap) ~ exp 27Ty

v 1)

(1A - e + T (AP - )2

In particular, we note that the two terms in this expansion have the same fuaiction
form as those obtained in Ref. [54], the coefficients differ. The nedso this
difference is unclear.

The rescaling of the DoS above and the appearance of the universal f
suggests that we should revisit tHedimensional result and look for a similar
rescaling. From Eq. (62) it is straightforward to verify that in this case

3/2
v(e < Egap) ~exp |-a (To(g))d Egap — €
v A\ L AW ’

wherea, represents some numerical constant, ang the characteristic length
defined by Eq. (60). Finally, by defining

A2 = A3,
()

whered () = 1/(vré(e)) is the level spacing inside a region of sizgthe volume
dependent prefactor can be absorbed into the expression and B&® baought

to the form
3/2
1/(6 < Egap) ~ exp [_ad <Egai) - 6) ]
A )

<

v g
revealing a simple relation between tlhe= 0 andd > 0 problems.

3.5.2. Universalities

The coincidence of Egs. (64) and (67) indeed suggests that gapafiiocts are
universal. To understand why, let us consider the following: At fitahge the
actions (65) and (33), used in section 2.3.1 to describe the quantumatnt pr
lem, would seem not to have much in common. However, a simple and general
argument may be established to reveal the universal character. & pdéfin-

iNg Oe(e) = im/2 + ¢Pme(e), the mean-field DoS for the SN device is given
by vme(e) = 2v Im sinh ¢e(€), Where ¢y, is determined by the condition
3S/6plp = dme] = 0. Since the DoS displays a square root singularity described
by Eq. (63), the (saddle-point) action near the edge is constrained faHmform

1.3 5 \? €+ — Egap | .
§S + (2ﬂ_> (Ag S|,

S[p] = —k str
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wheres(e) = sinh ¢(€) — sinh ¢t (Egap ). Here, the elements = diag(¢up, d5)
and s = diag(spp, sg) are diagonal in the superspace. (As one may check, a
variation of the action foe > E,, obtains the symmetric mean-field solution

0 |e—E
. gap
Sb = Sﬁ' =1
b 2 A3

which in turn recovers the expression (63) fofc).) Moreover, since the term
containings is linear in the energy, we can determine the valug: dfom the
knowledge that appears in the action d8me /§)sinh ¢. (It is this term that
can more generally contain the Dyson indék, ‘which therefore appears in the
general expression for gap fluctuations described in Ref. [46]. diptasent case,
we thus have: = (21A,/4)3.

Now, as discussed in the previous section, when E,,, there exists two
saddle-point solutions at

0 |Egap —€

As before, one of these solutions (¢) ~ ¢n¢(€)) is associated with the conven-
tional symmetric mean-field solution while the other represents a second saddle
point accessible only to the bosonic contour. Taking this second, symmmekgrb
saddle-point into account (i.e. setting, = s, andsg = s_), one obtains the

saddle-point action
3/2
w4 [ Egap —
Sl =5 (]
3 Ag

It is this symmetry broken saddle-point which controls the sub-gap Do$and
to the universal scaling form proposed in Ref. [46]. This generattaearguments
applied to the superconducting dot with magnetic impurities.

3.5.3. Discussion

Following on from this discussion, to conclude this section, let us make two re-
marks which bear on the universality of the general scheme. The fittstest
remarks concerns the integrity of the scaling of the sub-gap DoS wheatitf
impurity distributions are taken into account. The second remark concegns th
extension of the ideas above to the consideration of the hybrid SN systemde
the zero-dimensional regime.

Firstly, for the superconductor with magnetic impurities, one can generalize
the arguments above to show that the energy scaling of the sub-gap Bo$ev
the d-dimensional case is insensitive to the nature of the random impurity distri-
bution. This is in contrast to Lifshitz band tail states in semi-conductors where
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the energy scaling depends sensitively on this distribution. To understsnéet
us suppose that the distribution of magnetic impuriti&r) is not Gaussian-
correlated, as we assumed throughout, but obeys some arbitrary statisiie=d
by a probability functionalP[JS(r)]. When the ensemble average ové(r) is
performed one would obtain in the-field action a contribution of the form

In <exp [—i/dr UJS - 0P

>P = C[To™U(r)]

which defineg”[- - -], the generating functional of connected correlator$®fr).
Though this is in general a very complicated and indeed non-local furattadn
WoW(r), one can in principle find éocal Q-field action by including pairings
only at coincident points, justified by the assumptiéf)¢ < 1 about the non-
magnetic disorder. The mean-field description of this system then followstfre
homogeneous solution of the saddle-point equation, an Usadel equatdB0ik
with some potential. Generally this potential will have the same characteristics
as the real potential of (55) plotted in Fig. 9 on the lihe 6; = 7/2. The
central maximum is due to thé\| term; the upturn at large arises from the small
pair-breaking part, and the asymmetry comes fromettegm. Now, if mean-field
theory leads to a square-root singularity in the DoS (a circumstance whiche
avoided only by a special tuning of parameters), one can expect thheagicg
the energy leads to the maximum merging with one of the minima according to

Egop — €

1/2
Vilg] ~ —a <T> (6 — bunt)? + B(6 — bunt)?

with o and 8 chosen appropriately. Then the analysis of section 3.4 applies. In
particular the scaling of the exponent WittE,.,, — €)/|A|)(6=9/ is expected to
beuniversal and independent of the details of the magnetic impurity potential

Now let us turn to the generality of the present scheme in describing ‘gap
fluctuations’ in extended hybrid superconductor/normal systems. The hette
been discussed in a very recent paper by Ostrowskgl. [61]. In this work,
the authors developed an instanton approach analogous to that emplded in
magnetic impurity system here to estimate the profile of gap fluctuations i the
dimensional SNS system. Now from the discussion above, it is possible ds@xp
the relation between these two works: in the SNS system, the energy gapdhduc
in the normal region due to the proximity effect is determined by the Thouless
energy defined a8t ~ 1/7qwel, Whererqwen is the time required for electrons
in the normal region to feel the presence of the superconductor [B8]Thouless
energy is determined bt ~ min{D/L? T'N§} wherel is the transparency of
the contact to the superconductdr £ 1 in the analysis of the zero-dimensional
system above).

In the diffusive limit D/L? < T'N§, at the mean-field level, the position
of the quasi-particle energy gap is found by solving the Usadel equatin w
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the appropriate boundary conditions [62]. As a result one obtains aregaot
singularity in the DoS. In this case the mean-field solution is itself inhomoge-
neous. The sub-gap correction is found by identifying a second inhenemys
instanton configuration that breaks supersymmetry at the level of the &6fipn
Both solutions merge at the mean-field gap. Now, following the argumenteabov
it is simple to see how the phenomenology of Ref. [61] fits into the same general
scheme: in this case the relevant coordinaté)ahterpolates between the inho-
mogeneous mean-field solution and the instanton. The result is a sub-@p Do
which assumes the familiar form of Eq. (67), with appropriately definedgdy
dependent parametefs,.,, and A,. Naturally the introduction off; transverse
dimensions gives the expected energy dependen¢&gf, — ¢)(¢~41)/4 in the
exponent.

In the opposite limitD /L2 > T'N§ (not considered in Ref. [61]), gradients of
Q are heavily penalized and the coupling to the leadgstbe retained in its ‘log-
arithmic form’, with Q being taken as constant in the dot. (Indeed, the logarithm
is crucial to reproduce even the mean-field expression for the DoS\@3}he
correct coefficients.) This is the true zero-dimensional limit treated al¥wee
have seen, with this action, one recovers the known universal estpnefor the
spectrum of gap fluctuations below the mean-field edge. Finally, it is integestin
to note that the parallel (at the mean field level) between the magnetic impurity
problem and proximity effect situations was noted a long time ago [37, 63].

So far we have uncovered a high degree of universality in our dispusé
sub-gap states. This parallels the well-appreciated fact that the AG ttesomg in
a great many pair-breaking scenarios (see the ‘equivalence theameRef. [37]
and Ref. [64] for a more unusual context). In the next section we witiudis two
of the classical realizations of AG and ask whether the equivalencedsxten
description of sub-gap states

3.6. SUB-GAP STATES IN OTHER REALIZATIONS OF THE AG THEORY

Evidently, time-reversal symmetry can be broken by an external petionda a
number of ways. Soon after the seminal work of AG it was understoodd6p

that the single quasi-particle Green'’s function of a thin dirty film in a parakddifi

is described by the AG theory. Thus the predictions for bGtland the DoS are

the same as before. In fact, the DoS of the parallel field system is expéaiigen
better described by the AG theory than the magnetic impurity system. This has
been blamed on weaknesses of the model (37) in the magnetic impurity case [4].
We now analyze the parallel field system to address the universality afithgap
structure.
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3.6.1. Thin Film Superconductor in an in-plane Magnetic Field

Consider a thin film of thicknesg, in thex — y plane and in the limit where
d, < & Ar. Here ) is the London penetration depth. The effective action for
this system reads

uz

5=~ [ st [DVQY ~ aifeof + Alo5")o5"q)]

RecallV = V—z’eA[agh, | is the covariant derivative. To analyze the saddle-point
structure, note that in London gauge we ha\je= H z, and this also implies that
Qsp Is constant across the film. Since

1 _ 1 2, _ L 2
dL/dzA(z)_O, dl/dzA () = 5 (Hd1)?

we see that the paramagnetic piece must vanish from the saddle-poitibaqua
and we are left with

DV(QVQ) +i [Q,eo}" @ o5 +iAol"| + - [Q,05"Qab"| = 0,

1
2Ty
wherel /7y = D(Hd, )?/6, and we understand that the spatial derivatives are in
the plane. We note that this coincides with the Usadel equation (48) for the mag
netic impurity problem, once the spin singlet ansatz is made there. Evidently the
results of the AG theory are carried over wholesale withfor . Furthermore,
it is not difficult to see that the description of the sub-gap states is also idkntic
with the instantons living in the — y plane, where they are not disturbed by the
z-dependence oA.

In the introduction to this chapter we referred to intrinsic and extrinsic pisture
of tail state formation. It is clear that there is no extrinsic picture for thegures
situation like the ‘droplet’ view of the magnetic impurity system. Tail state forma-
tion is more likely due to a proportion of the spectrum being anomalously lacking
in phase rigidity.

Before moving on to an example where this universality is not repeated, it
should be noticed that the parallel field and magnetic impurity problems are not
equivalent as far as spin related physical quantities (like the spin st
are concerned [37], for obvious reasons. In the same way, if we drthin film
into the gapless phase by applying a parallel field, it is clear on symmetmdsou
alone that the spectral and transport properties of the low-energgi-pagicles
are those of class C. This is in fact a thermal (and sipislator— see [35].
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3.6.2. Pair breaking by supercurrent

Up to now we have not needed to discuss the phase of the order parahoeter
describe the situation where a supercurrent flows we will need to take this in
account. Varying the action with respect@ an applying the Ansatz,

Qsp = [agc ® 0B cosh 0 + i sinh (o™ cos ¢ — 05" sin qb)} @ 1%,

where ¢ will coincide with the phase of the order parameter= |Alei® at a
saddle-point, the saddle-point equations obeyef agd¢ divide into two. With
A =0,

. . . D .
V2,0 +2i (cosh 0— @ sinh e) — 5 (Vijes)?sinh(20) = 0.,

V,/e(sinh 0V, c¢) =0 . (68)

The second equation describes the conservation of (spectral) Cugradently
a constant phase gradient (that arises when we apply a phaserdifeaeross a
piece of uniform superconducting wire, say) acts as a pair-brealartgrpation
and the AG mean-field result holds as before wWits D(V¢)?/2|A].

Do localized tail states form in this situation? On the basis of the first equation
(68) we would be inclined to think so. But the current conservation lavs &dd
complication. This can be dealt with in 1D by substituting

const
sinh2§
It is straightforward to see that the resulting potential does not allow for the
existence of bounce solutions that we discussed before: there arealzdo
sub-gap states! On reflection this makes sense: a localized state camma ca
supercurrent, so there would be no pair-breaking effect.

Thus we see that the description of sub-gap states may not have quite-the un
versality of the AG mean-field solution for the extended part of the spectfam.
finish we mention one slightly unusual example where the tail state forndoes
proceed in the same way. This is the case of gap fluctuations in supecotorsdu
with a quenched inhomogeneous distribution of the BCS coupling constént [6
where a mean-field description identical to AG was given in [64]

O = (69)
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