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Phase sensitive noise in quantum dots under periodic perturbation
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We evaluate the ensemble averaged noise in a chaotic quantum dot subject to DC bias and a
periodic perturbation of frequency Ω. The noise displays cusps at bias Vn = nh̄Ω/e that survive
the average, even when the period of the perturbation is far shorter than the dwell time in the dot.
These features are sensitive to the phase of the time-dependent scattering amplitudes of electrons
to pass through the system, and thus provide a novel signature of phase-coherent transport that
persists into the non-adiabatic limit.

Shot noise in a phase coherent conductor is a fun-
damentally quantum phenomenon. A charge carrier
traversing the conductor may leave to each connecting
terminal with some probability. Thus noise, like conduc-
tance, is in principle sensitive to the quantum dynamics
of the charge carriers in mesoscopic systems. As is of-
ten the case, however, the shot noise under DC bias may
be well described by semiclassical reasoning, with only
small quantum corrections for large conductors [1]. In
this context it of interest to identify situations where the
noise has intrinsically quantum mechanical features that
are nevertheless significant in a large, but phase coherent
conductor. Such a situation is the subject of this Letter.
In 1993 Lesovik and Levitov [2] (LL) - building on the

work of Ivanov and Levitov [3] - demonstrated that the
noise of a coherent conductor in the presence of a DC bias
and an AC external field is a phase sensitive quantity.
Specifically, they showed that the zero temperature noise
displays cusps at voltages Vn = nh̄Ω/e, multiples of the
field frequency Ω, proportional to a quantity containing
the phase of the time-dependent scattering amplitude of
the electrons. For the case of a single scattering channel,
and ignoring the time of flight through the scatterer, the
noise S is a piecewise linear function of bias,

∂S

∂V
=

4e3

h
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, (1)

where tL(t) and rR(t) are the amplitudes for transmis-
sion from the left and reflection from the right, respec-
tively. The noise is related to the uncertainty 〈∆Q2

τ0〉
in the charge transported through the system in time τ0
by S = limτ0→∞〈∆Q2

τ0〉/τ0. The charge transfer statis-
tics of the of the AC driven system are a mixture of two
independent Bernoulli processes, characterized by the in-
tegers on either side of eV/h̄Ω, with attempt frequencies
(eV/h̄− nΩ)/2π and ((n + 1)Ω− eV/h̄)/2π. This is the
origin of the cusps. The key difference from the usual
situation in shot noise, corresponding to a purely bino-
mial distribution, is that the inelastic scattering due to
the AC field means that the multiparticle amplitudes for

identical fermions come into play. The fermionic nature
of the electrons does not just enter through the distribu-
tion function in the leads.
LL evaluated the λn for the case of a scatterer in a

simply connected loop placed in an AC magnetic field,
neglecting the time of flight through the scattering re-
gion. In time-dependent transport, this is usually known
as the adiabatic limit (note that in the open systems we
consider here, there is no trace of level discreteness). The
cusps in the noise were observed by Schoelkopf et al. in
diffusive wires [4]. In this Letter we show that the same
phenomenon may be observed when the dwell time τesc
in the scattering region is not small. This question arises
naturally when the scatterer is a chaotic quantum dot.
Here, one may be in the regime Ω ≫ τ−1

esc while remain-
ing in the ‘universal’ limit h̄Ω ≪ ET , where ET is the
Thouless energy, something that is not possible in a dif-
fusive wire where h̄/τesc ∼ ET . For micron-sized GaAs
quantum dots, with h̄/τesc in the µeV range, a frequency
of of 10 GHz, as was applied in the experiment of Ref. 5,
gives Ωτesc ∼ 100, so this regime is accessible.
It is not known whether single-particle excitations will

be coherent at the high bias required to observe the effect
we shall discuss. It should be stressed, however, that the
inelastic transitions in the AC field that are responsible
are completely coherent. That is, electrons are coherently
excited or de-excited by the applied field. It is remarkable
that this phase-coherent phenomenon survives into the
non-adiabatic regime, where weak localization and uni-
versal conductance fluctuations do not [6].
At low temperatures the principal source of smearing

of the cusps will be relaxation through electron-electron
scattering. We will neglect this for the remainder of this
paper, though this consideration will certainly be rele-
vant for experiment.
Experimental investigation of time-dependent trans-

port in chaotic dots has so far been concerned with the
construction of charge pumps [7]. Noise was measured in
a chaotic cavity under DC bias in Ref. 8. The measure-
ment of the noise in the presence of periodic perturbation
provides a novel probe of phase coherent transport.
Fig. 1 illustrates our principal finding. For a two ter-

minal device with N = N1 + N2 open channels in the
presence of an AC field with Ω ≫ τ−1

esc , the constant slope

http://arxiv.org/abs/cond-mat/0301308v2
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FIG. 1: Derivative of noise with respect to bias with (lower
curves) and without (upper) periodic perturbation for a sym-
metric (N1 = N2) quantum dot, showing steps at neV/h̄Ω at
zero temperature (solid line). At finite temperature the steps
are smeared (kBT/h̄Ω = 0.05, dashed line). We take C = 2.
Inset: experimental realization.

in the dependence of the noise on bias S = eIN1N2/N
2

- responsible the famous Fano factor of 1/4 for N1 =
N2 [8, 9, 10] - is split to form steps. The familiar result
is recovered at large bias. In addition to the Nyquist
noise, we find the contribution, depending on ‘strength’
parameter y

SP =
〈G〉h̄Ω
N2

{2N1N2F(|eV/h̄Ω|, y, kBT/h̄Ω)r (2)

+(N2
1 +N2

2 )F(0, y, kBT/h̄Ω)−N2kBT/h̄Ω} .

F(x, y, 0) is a continuous piecewise linear function of x,
with slope

∂F
∂x

= sgn(n)

[

1

2
− y|n+1|

(

2 + y + y2 +
(

1− y2
)

|n|
(1 + y)3

)]

|n| ≤ |x| < |n+ 1| .

In Eq. (2) 〈G〉 = (2e2/h)N1N2/N is the average conduc-

tance. The parameter y ≡ e−2 sinh−1
√

1/2C measures the
strength of the perturbation. C = τesc/τtr is the ratio of
the average transition rate induced by the perturbation V̂
in the Golden Rule approximation (τ−1

tr = 2π|Vαβ |2/h̄∆)
to the escape rate from the dot (τ−1

esc = N∆/2πh̄), where
∆ is the level spacing. Such a perturbation may be ap-
plied by periodic deformation of the quantum dot, as
illustrated in the inset to Fig. 1. The result is derived in
the limit N ≫ 1. Note that unlike phase coherent signa-
tures such as weak localization and conductance fluctua-
tions, this effect is of order unity, not small in the number
of channels.
It is possible to understand the size of the steps in

∂S/∂V by combining the results of LL with the recent
description of pumping in dots in Ref. 11. The general-

ization of the result (1) is (see Eq. (6) below)

λn =
∑

m,m′

tr
{

ΛS(m)
µ1

P1S
(m′) †
µ1

ΛS
(n−m′)
µ1+nh̄ΩP2S

(n−m) †
µ1+nh̄Ω

}

.(3)

The representation S
(m)
ij (E) that we use here gives the

amplitude to go from channel j to channel i having initial
energy E and gaining m quanta to have final energy E+
mh̄Ω. In terms of a general periodic two-time S-matrix
S(t, t′) = S(t+ 2π/Ω, t′ + 2π/Ω) we have

S(t, t′) =
∑

m

∫

dE

2π
S
(m)
E e−iE(t−t′)−iΩmt (4a)

S†(t, t′) =
∑

m

∫

dE

2π
S
(m) †
E e−iE(t−t′)+iΩmt′ . (4b)

In Eq. (3) the matrices P1,2 project on the channels in
leads 1 and 2 with chemical potentials µ1 and µ2 =
µ1 + nh̄Ω at the nth step, and the vertex Λ = (N2P1 −
N1P2)/N . An ensemble average of Eq. (3) in the limit
Ω ≫ τ−1

esc causes terms with m 6= m′ to vanish, as the
S-matrix is only correlated on energy scales of the order
of h̄/τesc or less. Only the (ensemble averaged) proba-

bilities P (m) = N〈|S(m)
ij (E)|2〉 of an electron to gain or

lose m quanta while passing through the dot survive. We
have

λn =
(N1N2)

2

N3

∑

m

P (m)P (n−m) .

We will see that this arises from F(x, y, 0) of the form

F(x, y, 0) =
1

4

∑

m.n

[|n− x|+ |n+ x|]P (m)P (n−m) . (5)

These formulae have the following meaning. Noise arises
from the creation of zero energy particle-hole pairs in
the outgoing channels. The quantities

∑

m P (m)P (n−m)

are the probabilities for a pair of energy nh̄Ω in the in-
coming channels to be scattered to a zero energy pair.
Their weight in the sum (5) measures the number of nh̄Ω
pairs. The disappearance of the noise contribution from
nh̄Ω pairs as V increases through nh̄Ω/e is the origin of
the cusps. The statistical independence of these contri-
butions indicates that exchange effects have been lost in
the average, as this is the only source of correlation in
the noninteracting system.
In the limit of strong pumping C ≫ 1, where an elec-

tron makes many transitions, its energy diffuses so that
∆E2

t = (h̄Ω)2t/τtr. Assuming a Gaussian distribution of
∆Et and combining with the exponential distribution of
dwell times in a quantum dot leads to the estimate of the
probability

P (m) ∼
∫ ∞

0

dt
1

τesc

√

τtr
2πt

exp

(

− t

τesc
− m2τtr

2t

)

∼
√

τtr
2τesc

exp

(

−
√

2τtr
τesc

|m|
)

.
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By substituting into Eq. (5), one can recover the given
properties of F(x, y, 0) in the limit C ≫ 1.
Thus despite the completely randomized behavior of

the S-matrix on the scale of h̄Ω, the cusps in the noise
persist provided that the Fermi distribution of the in-
coming electrons is sufficiently sharp. What cannot be
achieved in this limit is the tuning of the step size to zero
through complete destructive interference of the multi-

particle amplitudes, the direct analogue of the Aharonov
Bohm effect discussed by LL. Now we turn to the details
of the calculation. General formulae for the shot noise
in terms of S(t, t′) have recently been given by Polianski
et al. [12]. They separate the noise into S = SN + SP ,
with SN the Nyquist noise, and SP the non-equilibrium
contribution.

SP =
2e2

τ0

∫ τ0

0

dtdt′
∫

dt1dt2dt
′
1dt

′
2 tr

[

N (t1 − t′2)S†(t1, t)ΛS(t, t2)Ñ (t′1 − t2)S†(t′1, t
′)ΛS(t′, t′2)

−N (t1 − t′2)δ(t1 − t)Λδ(t− t2)Ñ (t′1 − t2)δ(t
′
1 − t′)Λδ(t′ − t′2)

]

. (6)

The matrices N (t) and Ñ (t) are given by

N (t) = 11− Ñ (t) = P1n1(t) + P2n2(t) ,

where n1,2(t) are the Fourier transforms of the distribu-
tion functions in the leads n1,2(ǫ) = (e(ǫ−µ1,2)/kBT +1)−1.
The factor of two in Eq. (6) assumes spin degeneracy.
SN is related to the time-averaged conductance

through the fluctuation-dissipation theorem SN =
2kT Ḡ. The time-averaged conductance has been ana-
lyzed extensively in Refs. 6, 13. Polianski et al. analyzed
Eq. (6) in the context of quantum pumps.
The formula (3) for the steps may be obtained by pass-

ing to the representation (4). To apply Eq. (6) to chaotic
quantum dots, we need to average over realizations. We
will need the two-point correlation function of S-matrices,
valid in the limit N ≫ 1, in the presence of a time-
dependent perturbation x(t)V̂ (we set kB = h̄ = 1) [6, 14]

〈Sij(τ, σ)S∗
ij(τ

′, σ′)〉 = δ(τ − σ − τ ′ + σ′)θ(τ − σ)

×D(τ, σ; τ ′, σ′) (7)

D(τ, σ; τ ′, σ′) =
∆

2π
e
−τ−1

esc

∫ |τ−σ|
0 dξ

{

1+C[x(σ+ξ)−x(σ′+ξ)]2
}

.

Though Eq. (6) contains a product of four S-matrices,
only the two point function is required. The non-
gaussian connected correlator of four S-matrices (aris-
ing from diagrams containing a Hikami box) [11, 14]
does not contribute. This is because it has the struc-
ture 〈SijS

∗
klSmnS

∗
op〉HB ∝ δjlδkmδnpδoi, so that its use in

Eq. 6 gives factors of tr[Λ] = 0. Similarly the 〈SΛS†〉
pairings are absent. The choice of current operator
Î = (N2Î1 − N1Î2)/N is responsible for the traceless Λ
vertex. Using (7) to average (6) yields

SP = −2e2N1N2

Nτ0

∫ τ0

0

dtdt′
(

T

2 sinh(πT (t− t′ + i0))

)2

(8)

×
(

[

N2
1 +N2

2 + 2N1N2 cos(eV (t− t′)]
)

(
∫ ∞

0

D(t, t− ξ; t′, t′ − ξ)dξ

)2

− 1

)

.

We evaluate Eq. (8) for a perturbation x = sinΩt in
the high frequency regime Ω ≫ τ−1

esc . In this limit the
Diffuson may be written

D(τ, σ; τ ′, σ′) =
∆

2π
e
−τ−1

esc

(

1+2C sin2
(

Ω(τ−τ
′)

2

))

|τ−σ|
,

Substituting this into (8), and performing the integrals in
the τ0 → ∞ limit - it is convenient to Fourier transform
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- gives the result (2) where the function F(x, y, z) is

F(x, y, z) =
∑

n

N(x, z, n)y|n|
(

1− y

1 + y

)2(
1 + y2

1− y2
+ |n|

)

N(x, z, n) =
1

4
[(n− x) (coth ((n− x)/2z) + 1)

+(n+ x) (coth ((n+ x)/2z) + 1)] .

The zero temperature result involves the function
F(x, y, 0) described earlier. It has the form (5) with the
probabilities given by P (m) = y|m|/

√
1 + 2C, which co-

incides with our earlier estimate at C ≫ 1
We may instead evaluate Eq. (8) in the time domain.

In this case, the cusps in the noise arise from poles in the
integrand over t− t′ at (±2i sinh−1

√

1/2C +2πp)/Ω for
integer p, This is the origin of the phase dependence of
the noise: t and t′ are the initial times in the two electron
trajectories that comprise the Diffuson, see Eq. (7). A
characteristic imaginary time is typical of the quasiclassi-
cal treatment of an AC driven quantum system [15]. By
contrast the zero temperature shot noise is determined by
a pole at t − t′ = 0, corresponding to trajectories which
start at the same instant, so that the phase of the time
dependent amplitude is irrelevant.
Naturally the cusps also exist in the adiabatic limit

considered by LL: Ω ≪ τ−1
esc . In this case it is convenient

to express the λn in the form

∑

n

λn exp (−inΩτ) =
(N1N2)

2

N3

1 + 2C sin2 (Ωτ/2)
(

1 + 4C sin2 (Ωτ/2)
)

3
2

,

and one can verify the sum rule
∑

n λn = (N1N2)
2/N3

required to recover the DC result at high bias.
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