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Spin one condensates in the polar (antiferromagnetic) phase in two dimensions are shown to undergo a tran-
sition of the Ising type, in addition to the expected Kosterlitz–Thouless (KT) transition of half vortices, due to
the quadratic Zeeman effect. We establish the phase diagram in terms of temperature and the strength of the
Zeeman effect using Monte Carlo simulations. When the Zeeman effect is sufficiently strong the Ising and KT
transitions meet. For very strong Zeeman field the remaining transition is of the familiar integer KT type.
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Ultracold atomic gases represent a new frontier in quan-
tum magnetism, where optical traps allow for the possibility
of spontaneous ordering of the atoms’ spin. In particular, sys-
tems of spinful bosons allow for the possibility of studying
the interplay of Bose condensation (or superfluidity) and mag-
netic ordering in spinor condensates. In this Letter we discuss
one of the simplest such systems: the polar (or antiferromag-
netic) spin-1 condensate in a magnetic field, realized in a gas
of 23Na atoms [1]. We show that there are two types of de-
fects: vortices and domain walls, or strings. Some years ago a
number of authors [2–4] studied the interesting phase diagram
that results from the competition between vortex interactions
and string tension in a simple statistical mechanical model.
Our goal here is to show that the same physics can arise in a
atomic gas from quite different microscopic origins.

Consider a dilute gas of spin-1 bosons, described by a
spinor φ(r). The character of the magnetic order that develops
at low temperature depends upon the interatomic interactions,
described by two kinds of quartic terms [5, 6]
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corresponding to a density-density and spin-spin interaction
respectively. Here S are the spin-1 angular momentum ma-
trices. It is convenient to work in terms of Cartesian compo-
nents, where (Si)jk = −iεijk. Writing φ = a + ib, where
a and b are real vectors, the second term in Eq. (1) becomes
2c2 (a× b)

2. We see that for c2 < 0 the energy is minimized
at fixed density for a, b perpendicular and equal, while for
the case c2 > 0 that will be our primary concern, a and b are
parallel. Conventionally these two possibilities are called the
ferromagnetic and polar states, respectively.

In the mean-field description sketched above, a non-zero
expectation value 〈φ〉, or equivalently off-diagonal long-
range order in the density matrix ρab(r, r′) ≡ 〈φ†a(r)φb(r

′)〉,
simultaneously describes Bose condensation and the breaking
of rotational symmetry. It is natural to ask whether these two
phenomena necessarily go hand-in-hand, and if not, which oc-
curs first as the temperature is lowered. We will show that
in the two dimensional polar system (c2 > 0, appropriate
to 23Na), such an intermediate phase can arise, possessing
quasi-long-range order in the singlet pair amplitude φ · φ –
a pair superfluid (PS) – while the spin remains disordered.
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FIG. 1: (Color online) The phase diagram for a two dimensional po-
lar condensate with quadratic Zeeman effect. The dashed red line
and solid blue line mark the KT transition and Ising transition re-
spectively. In the normal phase (N) half vortices of equal or oppo-
site charge are joined by domain walls (blue lines). In the superfluid
phase (S) vortices of opposite charge are bound (red ellipse) and there
are no domain walls. In the pair superfluid phase (PS), q/t . 4, vor-
tices are bound but domain walls remain.

Spin ordering occurs in a second transition at a lower tem-
perature. This is possible when there is a small anisotropy
originating from the quadratic Zeeman effect, permitting an
Ising transition where none would be allowed at zero field by
the Mermin–Wagner theorem. At larger anisotropies the PS
phase vanishes. The resulting phase diagram, shown in Fig.
1 for our Monte Carlo simulations of a particular model to
be described shortly, is our principal finding. The prospects
for observing the transitions and the intermediate phase in an
atomic gas will be discussed in the conclusion.

Let us begin by discussing the phases in Fig. 1 in qualita-
tive terms. The superfluid transition of scalar bosons in two
dimensions is of the KT type, mediated by the binding of vor-
tices, suggesting that we consider the analogous defects of a
polar condensate. In the polar state we may write φ = neiθ,
where n is a real unit vector and θ is a phase variable, (and
we have we set the density equal to unity). In this represen-
tation taking n → −n and θ → θ + π maps the spinor to
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FIG. 2: (Color online) A half vortex pair connected by a domain
wall (shaded region) in the n vector (shown red) arising from easy
axis anisotropy (the easy axis is horizontal). The blue arrows denote
the configuration of the phase θ.

itself. Thus the elementary vortex has circulation h
2m , or one

half of the usual quantum of circulation, and coincides with a
‘disclination’ in the vector n.

The character of these point defects is dramatically altered
by the inclusion of the Zeeman energy, which has the form

HZ =

∫
drφ†

[
pSz + qS2

z

]
φ. (2)

Here p and q describe the linear and quadratic effects (q > 0).
We will be concerned with a system of zero total Sz , so that
the linear term has no effect: the case of non-zero Sz will be
discussed briefly at the end. In the (n, θ) representation the
quadratic effect contributes an energy per particle of q(1−n2

z),
amounting to an easy-axis anisotropy for the n variable.

At this point, it is convenient to introduce a simple lattice
model which will be useful for our numerical simulations:

H = Ht +HZ, HZ = −q
∑
i

n2
z,i

Ht = −t
∑
〈ij〉

[
φ†i · φj + c.c

]
= −2t

∑
〈ij〉

ni · nj cos (θi − θj)

(3)

with hopping parameter t. The corresponding continuum
model for the spinor takes the form

H →
∫
ddr

[
t (∇n)

2
+ t (∇θ)2 − qn2

z

]
(4)

(we take the lattice spacing equal to unity). Notice that the su-
perfluid and magnetic degrees of freedom appear to decouple
in this expression. The only coupling is global, in that half-
vortex / disclinations are allowed. Thus when these defects
are absent (or bound) the n degrees of freedom are described
by the familiar Heisenberg model with anisotropy.

In Eq. (4), q appears as a ‘mass’ for deviations from the
easy axis, meaning that such deviations are confined to ‘do-
main walls’ of thickness ∝ q−1/2 that have an energy per unit
length – or tension –∝ q1/2. Furthermore, these domain walls
can terminate on the half-vortices discussed above, see Fig. 2.

Now we are in a position to understand the structure of
the phase diagram. At q = 0, the only finite temperature

transition is a KT transition at T = TKT ≈ tπ/8 due to
binding of the half-vortices, which have lower energy than
integer vortices [7, 8]. The distinctive features of this tran-
sition will be discussed later. After the half-vortices become
bound, the description of the n degrees of freedom coincides
with that of the ordinary Heisenberg model, and no order ap-
pears at finite temperature. For q nonzero but small the do-
main walls connecting half-vortices have too little tension to
affect the KT transition. Once the half-vortices have become
bound, the domain walls are closed but otherwise fluctuating,
and can disappear in an Ising transition at a lower tempera-
ture. An alternative way to think about this second transition
is in terms of the Heisenberg model, which has an Ising tran-
sition in the presence of an easy-axis anisotropy. Finally, at
large q, the n vector is pinned to the ±ẑ direction and the
model Eq. (3) coincides with the usual XY model after shift-
ing θi → θi + πnz,i/2. In this regime there is a single KT
transition of integer vortices. In terms of the original spin
states of the boson, only the Sz = 0 state is occupied, so that
the behavior of a scalar condensate is recovered. An earlier
investigation considered only q = 0 and large q, so that the
interesting interpolation between these two limits went unno-
ticed [7]. We note parenthetically that the case q < 0 – harder
to realize experimentally – was also studied recently [9].

The region occupied by the intermediate PS phase in the
model Eq. (3) is very small: its presence could not be unam-
biguously determined by Monte Carlo simulations on systems
of up to 40 × 40 sites. This is likely due to the Ising transi-
tion line being very steep near q = 0. Standard arguments for
the scaling of the ‘mass’ (correlation length) with temperature
[10] show that T ∼ −1/ log(q) for small q. We therefore
study a generalized model with a ‘pair hopping’ term

Hu = −u
2

∑
〈ij〉

(
φ†i · φ

†
i

)(
φj · φj

)
+ c.c. (5)

Including Hu in Eq. (4), we see that a finite u only stiffens the
phase variable, changing the coefficient of the θ term from t
to t + 2u. The half-vortex KT transition then occurs at the
higher temperature T ≈ (t + 2u)π/8, increasing the size of
the PS phase. In the following we take u = 2t as then the PS
phase is clearly visible even for moderate system sizes. Ex-
perimentally a similar result could be achieved by increasing
c2 until 2-body singlet bound states form at q = 0. Then n
is disordered even at T = 0 (enlarging the PS phase) until q
is large enough to cause a quantum phase transition into the S
phase. Photoassociation data suggest that the required condi-
tion, a divergent singlet scattering length, has been achieved
already via optical Feshbach resonance (Fig. 7 of Ref. [11]).

For q → ∞ the model is equivalent to the Hamiltonian of
the generalised XY model (see e.g.[2–4])

H∆ = −
∑
〈ij〉

(
∆ cos(θi − θj) + (1−∆) cos(2θi − 2θj)

)
,

(6)

where conventionally ∆ ∈ [0, 1]. This model also exhibits a
PS phase. Our choice of parameters corresponds to the case
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FIG. 3: (Color online) The specific heat, C, for L = 16, showing
the merging of the peaks associated with the two transitions as q
increases. Inset: C for different system sizes at q = 1.

∆ = 0.5 so that, according to the phase diagram in Ref. [4]
the large q limit of our model with u = 2t still has a single
transition (hence u itself does not produce a PS phase for q →
∞). As q is reduced this transition should split in two.

We study the phase diagram of the model H = Ht +Hu +
HZ via Monte Carlo simulations (using tools from the ALPS
libraries [12]) on square systems of L× L sites with periodic
boundary conditions. As there are three continuous param-
eters per site a large number of sweeps of the lattice are re-
quired to equilibrate and collect reliable data, even for small
system sizes (> 106 for L = 8). We performed simula-
tions for L = 8, 16, 24, 32 with some extra data collected for
L = 40, 48 in special cases. To detect two separate transi-
tions, we consider the specific heat capacity in addition to the
Binder cumulants for both the spinor and the phase.

A phase transition of the Ising type at T = Tc should
present itself as a sharp peak in the specific heat, C, for fi-
nite size simulations. KT transitions are also accompanied by
a peak in C, above TKT , associated with the increase in en-
tropy when vortices unbind. Fig. 3 shows that as q approaches
a critical value, q ∼ 4, the sharper lower temperature Ising
peak and the broader higher temperature KT peak merge.

Better quantitative information is given by the Binder cu-
mulants [13]. The Binder cumulant for the spinor is

B[φ] =

〈
(Φ† ·Φ)2

〉
〈(Φ† ·Φ)〉2

(7)

where Φ =
∑
i φi/N . An example plot is given in Fig. 4. We

also calculate the cumulant for the z component:

B[φz] =

〈
(Φ†zΦz)

2
〉〈

(Φ†zΦz)
〉2 . (8)

These cumulants are sensitive to order and Ising-like order in
φ, respectively. On the other hand they are not sensitive to
order (or quasi long-range order) in the phase alone. Instead,
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FIG. 4: (Color online) Intersection of the Binder Cumulants, B[φ]
for different L at q = 1. Inset: enlarged region of intersection.
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FIG. 5: (Color online) Left: Intersection of the Binder Cumulants
B[φ] for different L at q = 1. Right: The same data but plotted
against (T − Tc)L. Note that the data for L = 8 is not within the
range of validity for finite size scaling.

to look for order in exp(2iθ), we use the cumulant

B[2θ] =

∑
ijkl 〈exp [2i(θi − θj + θk − θl)]〉

(
∑
ij 〈exp [2i(θi − θj)]〉)2

. (9)

In the vicinity of a conventional, continuous transition at
Tc, and where finite size scaling holds, the Binder cumulant
for a suitable variable can be written in the form

BL = B̃(T̃L
1
ν ) (10)

where B̃ is a universal scaling function, and T̃ = (T−Tc)/Tc.
From this we conclude that Binder cumulants for different L
cross at T̃ = 0, providing an accurate method for determining
Tc. For KT transitions, eq. (10) does not hold. However the
crossings for different L still occur in a suitably narrow range
[14] (see Fig. 6), allowing us to estimate TKT . Fig. 1 shows
Tc and TKT as found using the above cumulants. The values
of Tc provided by B[φ] and B[φz] agree within error over the
full range of q investigated. As a further check on the nature
of the PS to S transition we extract the critical exponent ν by
calculating dBL/dT at Tc. We find that ν is at least consistent
with the Ising value ν = 1, within error. An example of the
resulting data collapse is shown in Fig. 5.
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FIG. 6: (Color online) Intersection of the Binder Cumulants B[2θ]
for different L at q = 1. Inset: enlarged region of intersection.
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π
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π
respectively. The jump is clearly com-

mensurate with ∆Υ = 8T
π

.

Following Ref. [7] we also examine the helicity modulus
(also known as spin stiffness or superfluid density), Υ, de-
fined as the change in free energy due to a twist in boundary
conditions along some direction, x̂. A KT phase transition at
TKT is reflected in the helicity in the form of a jump propor-
tional to TKT (see e.g. [10]). When the transition is driven by
half-integer vortices this jump will be four times larger than
for the integer case [15]:

∆Υ 1
2KT

= 4∆ΥKT =
8TKT
π

. (11)

The observed position of the helicity jump as a function of
q and T confirms that the transition temperature provided
by B[2θ] represents TKT with reasonable accuracy. As in
Ref. [7] we find that the N to PS transition is due to the
presence of half vortices (Fig. 7). In fact, setting u = 2t
means that the transition is facilitated by half vortices even
for q → ∞. This is consistent with eq. (6) for ∆ = 0.5.
In that case half-vortices still exist, though they occur in the
phase alone and the line defects that join them have energy

independent of q [4]. As u approaches zero the integer KT
transition at large q should be recovered.

We now return to the case of finite Sz . As in the case of an
antiferromagnet with an easy axis anisotropy, increasing Sz
leads to a spin-flop transition between a state with n aligned
in the z-direction to one where it lies in the x− y plane. Such
a transition is described by a bicritical point of the Heisenberg
type, which in d = 2 must occur at T = 0 [16, 17]. At
finite T , the low Sz Ising and high Sz , xy ordered, phases are
separated by a normal region. The high Sz phase resembles
the q < 0 case discussed in Ref. [9].

In conclusion we have argued that polar condensates un-
dergo separate KT and Ising transitions when subjected to the
quadratic Zeeman effect. We have supported this finding with
Monte Carlo simulations. Aside from the thermodynamic sig-
natures discussed here, the PS phase should be visible in the
correlation function of occupancies of different momentum
states, as measured by the noise correlations in an image of
the expanded gas: 〈δn(k1)δn(k2)〉 ∝ |k1 + k2|4η−2 with
η = T/(2πΥ) [18].
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