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We discuss the ordering of a spin-1 condensate when quenched from its paramagnetic phase to
its ferromagnetic phase by reducing magnetic field. We first elucidate the nature of the equilibrium
quantum phase transition. Quenching rapidly through this transition reveals XY ordering either at
a specific wavevector, or the ‘light-cone’ correlations familiar from relativistic theories, depending on
the endpoint of the quench. For a quench proceeding at a finite rate the ordering scale is governed
by the Kibble-Zurek mechanism. The creation of vortices through growth of the magnetization
fluctuations is also discussed. The long time dynamics again depends on the endpoint, conserving
the order parameter in zero field, but not at finite field, with differing exponents for the coarsening
of magnetic order. The results are discussed in the light of a recent experiment by Sadler et al.
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How does a many-particle system undergo condensa-
tion into an ordered state? This question is central to
a number of disparate areas of physics, from condensed
matter to cosmology [1, 2]. Often we are interested in the
processes determining the formation of ordered domains
and topological defects. The usual approach is to study
the coupled dynamics of the collective (or hydrodynamic)
degrees of freedom, including the order parameter and
any conserved quantities. Thus the dynamics is highly
constrained by the presence or absence of conservation
laws, with dramatic differences in the resulting time evo-
lution of correlations. Such considerations will be im-
portant when we quench into an ordered state at zero
temperature through a quantum phase transition [3, 4].

Such a possibility was explored in a recent experiment
that studied ferromagnetic ordering in a Bose-Einstein
condensate of 87Rb atoms following a sudden reduction
in magnetic field [5]. Cold atomic gases represent an ex-
citing new prospect for the investigation of such quantum
quenches. As we will show, they represent a far closer
analog of relativistic theories than the condensed matter
systems suggested for ‘laboratory cosmology’ by Zurek
and reviewed in Ref. [6]

Earlier, mostly numerical work [7–11] has focused on
treating the creation of spin domains in condensates as
a property of a classical dynamical system. Our goal
in this Letter, on the other hand, is to first explain the
character of the equilibrium quantum phase transition,
and then to discuss the associated dynamics as a prob-
lem of phase ordering. In particular, this will lead us to
carefully distinguish different quenches in terms of the
conservation laws obeyed, and the resulting dynamics of
topological defects (vortices in the magnetization). These
are features not present in the model systems discussed in
Refs. [3, 4], for instance, and their treatment requires the
introduction of some novel theoretical ideas that should
be of broad applicability.

The existence of an ordering transition in the ferro-

FIG. 1: Zero temperature phase diagram of a spin-1 conden-
sate in terms of the linear and quadratic Zeeman energies.
The shaded area corresponds to the region of XY ordering.
The experiment of Ref. [5] involved a quench through the spe-
cial point at p = 0 (red dot) from the paramagnetic region.

magnetic spin-1 Bose gas is readily understood on the
basis of a variational Gross-Pitaevskii calculation [12].
The second-quantized Hamiltonian is [13, 14]

H =

∫

drH0 + HInt (1)

H0 = φ†
m

[
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2
∇2 + EZ

m

]

φm

HInt =
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2
φ†

mφ†
m′ [c0δmnδm′n′ + c2Fmn ·Fm′n′ ] φn′φn

The index m = −1, 0, 1 gives the z-component of total
spin of the corresponding state, and we have set ~ and
the atomic mass to unity. F i

mn are the spin-1 matri-
ces for i = x, y, z. EZ

m is the Zeeman energy of the m-
component, defined below. For a ferromagnetic system
the spin interaction parameter c2 is negative. We imple-
ment the Gross-Pitaevskii approximation by treating the
φm as c-numbers ϕm and writing ϕm =

√
nχ̂m in terms

of a normalized spinor χ̂m. The energy per particle is
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The last two terms originate from the linear and
quadratic Zeeman energies, the general case for spin-1:
EZ

m ≡ −p̃m+ qm2. In fact the coefficient p in the energy
is the sum of the linear Zeeman term and a Lagrange mul-
tiplier enforcing conservation of Fz. We should minimize
Eq. (2) and then use the true value of the magnetization
〈Fz〉 to fix p. Thus with zero total magnetization we will
have p = 0. In this case it is straightforward to see that
for q > q0 ≡ 2|c2|n the spinor state χ̂† = (0, 1, 0) mini-
mizes the energy, while for q < q0 the ±1 states become
populated, leading to a transverse magnetization density
f⊥(r) ≡ fx(r) + ify(r), where f i(r) ≡ φ†

m(r)F i
mnφn(r).

In the general case p 6= 0 [15]

|〈f⊥〉| = n

√

q2 − p2

√

(p2 + q0q)
2 − q4

q0q2
, (3)

showing that 〈f⊥〉 is nonzero between the lines |p| = q
and |p| =

√

q(q − q0) (see Fig. 1). Thus the mean-field
calculation predicts a symmetry-breaking quantum phase
transition. For p 6= 0, there is also a perpendicular mag-
netization in this region

〈fz〉 = n
p

(

p2 + q0q − q2
)

q0q2
.

and the ordered phase is a canted XY ferromagnet [16],
while the f⊥ = 0 phase is an XY paramagnet (finite
transverse susceptibility).

We now ask in more detail what kind of quantum phase
transition we are dealing with. This is more than a for-
mal question, as the dynamics of the order parameter
at the transition will be crucial in determining the be-
havior following a quench. We start by considering the
Bogoliubov theory of the paramagnetic phase. Shifting
the fields φm in Eq. (1) by ϕ† = (0,

√
n, 0) we find that

in the quadratic part of the Hamiltonian the φ±1 states

decouple from the φ0 state to give

HB ≡
∑

k,m=±1

φ†
k,m [εk − pm + q + c2n] φk,m

+c2n
∑

k

φ†
k,1φ

†
−k,−1 + φk,1φ−k,−1. (4)

(εk ≡ k2/2) This is readily diagonalized by Bogoliubov
transformation to yield (except for a constant)

HB =
∑

k

Es,+(k)a†
kak + Es,−(k)b†kbk, (5)

where Es,±(k) = Es(k)∓p, with the spin wave dispersion
E2

s (k) = (εk + q) (εk + q + 2c2n). One of these disper-
sions passes through zero when |p| = pc ≡

√

q(q − q0),
the same instability of the paramagnetic phase that we
found before. Except at p = 0 the transition to the or-
dered state proceeds by filling of either the ‘particle’ or
‘hole’ band in Eq. (5), and involves a change in Fz . Since
this is conserved, it is impossible to cross this transition
without contact to a reservoir of magnetization (unless
T 6= 0). When p = 0, on the other hand, the transition
occurs through closing of the bandgap and the longitu-
dinal magnetization remains zero.

To make a connection to the general theory of quantum
phase transitions, we rewrite the Hamiltonian Eq. (5)
using the (complex) canonical coordinates and conjugate
momenta

zk ≡ 1
√

Es(k)

(

ak + b†−k

)

, πk ≡ i
√

Es(k)
(

a†
k − b−k

)

In this way we get (dropping the momentum sum)

HB =
1

2

(

π† + ipz
) (

π − ipz†
)

+
1

2

[

E2
s − p2

]

z†z. (6)

Eq. (6) is recognized as the Hamiltonian of a two-
dimensional particle in a uniform perpendicular magnetic
field and harmonic oscillator potential.

How do we interpret the field z? The Fourier modes
of the transverse magnetization density f⊥(r) may be
written in terms of zk as

f⊥ k =
√

2
∑

l

φ†
l+k,1φl,0 + φ†

l+k,0φl,−1

=
√

2n(εk + q)z†k + · · ·

where the dotted lines denote terms higher order in the
quasiparticle operators. At low k the two are simply
proportional, as one would hope.

Below the transition, the higher order terms dropped
from the Hamiltonian Eq. (4) are required to saturate
the growth of f⊥(r). Close enough to the transition a
quartic term is sufficient. Obtaining this term within
the Bogoliubov theory is slightly subtle as it involves
the partial cancellation of the ‘direct’ quartic interac-
tion neglected in Eq. (4) against the interaction induced
by phonons [17]. The most relevant term may be found
more simply, aside from a small renormalization, from
the observation that it is responsible for the square root
singularity in Eq. (3) in the mean-field approximation.
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We write the final result as an effective action valid near
the transition, and for length scales ≫ q−1/2 [27].

Seff =

∫

dr dt
1

2

[

ż†ż − c2
s∇z†∇z −

(

p2
c − p2

)

z†z
]

−ipz†ż − |c̃2|q2

2
|z|4 (7)

c̃2 ≡ (1− |c2|
c0

)c2. To obtain the quadratic part of Eq. (7)
from Eq. (6) we have approximated the spectrum as

E2
s (k) ∼ c2

sk
2 + p2

c c2
s ≡ q − q0/2 (8)

The precise form of the anharmonic terms in Eq. (7) will
not be important in the following development.

Seff is identical to the effective theory describing
the superfluid-insulator transition in the Bose-Hubbard
model. As in that problem, the point p = 0 is identified
as a special point where the transition, instead of being of
the bose condensation type, lies in the universality class
of the (d + 1)-dimensional XY model [18]. It is relevant
to ask whether the deviations from mean field critical be-
havior implied by this identification will be seen in exper-
iment. For a two-dimensional condensate a standard cal-
culation gives the Ginzburg criterion for the breakdown

of mean field behavior [17] |c̃2|
πL⊥

(

q0

q−q0

)1/2

& 1 where

L⊥ is the transverse dimension. Since for the system in
Ref. [5] the prefactor is of order 10−4, the mean field
theory is an excellent approximation.

With this mind, we now proceed to describe the evo-
lution of a system that is quenched suddenly through
the transition at p = 0 from an initial value qi > q0 for
t < 0 to qf < q0 at t > 0, as in Ref. [5]. There is a
band of unstable modes with E2

s (k, qf ) < 0, the occu-
pancy of which begins to grow exponentially, as they are
populated with pairs of atoms scattering from the m = 0
state. The quadratic Hamiltonian Eq. (5) describes this
process adequately until the populations are such that
the anharmonic interactions between the modes – such
as the last term of Eq. 7 – become important. Writing
the Hamiltonian for t > 0 in terms of the fields zk defined
at q = qi, and with ω2

k ≡ −E2
s (k, qf ), we find the solution

of the Heisenberg equations of motion

zk(t) = zk(0) coshωkt + πk(0)ω−1
k

εk + qf

εk + qi
sinhωkt

The calculation of the correlation function of the trans-
verse magnetization is then staightforward

〈f⊥k(t)f †
⊥−k(t)〉 = 2n (εk + qi)

[

cosh2 ωkt〈z†k(0)zk(0)〉

+ω−2
k

(

εk + qf

εk + qi

)2

sinh2 ωkt〈π†
k(0)πk(0)〉

]

,

revealing the exponential growth of the magnetization.
The initial fluctuations of the oscillator modes are [28]

〈z†k(0)zk(0)〉 = (Es(k, qi))
−1, 〈π†

k(0)πk(0)〉 = Es(k, qi).

These general formulae are valid for any instantaneous
quench [29]. In the following we will make the simplifi-
cation of taking qi ≫ q0 (shot noise limit) , which gives

〈f⊥k(t)f †
⊥−k(t)〉 = 2n

[

cosh2 ωkt +

(

εk + qf

ωk

)2

sinh2 ωkt

]

.

Now we wish to focus on two particular values of qf to il-
lustrate the different possible classes of behavior. If qf =
0 the spectrum of unstable modes is ω2

k = εk (q0 − εk),
which has a maximum at k =

√
q0. The correlation func-

tion is therefore dominated by the fluctuations on this
scale that grow at a rate q0. Taking into account only
the unstable modes, we find for the asymptotic behavior
of the real space correlations

〈f⊥(r, t)f †
⊥(r′, t)〉 → n

2L⊥

√

q0

2πt
J0(

√
q0|r − r

′|)eq0t

for q0t ≫ 1, r/t ≪ cs. The Bessel function is an angular

average of plane waves of wavevector q
1/2
0 . The result is

a growing random spin texture of typical scale q
−1/2
0 , as

observed in Ref. [5]. Note that the vanishing of the mode
growth rate at zero wavevector is a consequence of the
conservation of all three spin components in zero field.

Very different behavior results if qf is only just below
q0, so that pc/c2

s << 1. In this case the spectrum of
unstable modes reflects the relativistic form of Eq. (8)

ω2
k = c2

s

(

k2
c − k2

)

,

with k2
c ≡ −p2

c/c2
s the ‘Compton wavevector’. In this

case we get the asymptotic behavior

〈f⊥(r, t)f †
⊥(r′, t)〉 → nq0

4πL⊥

1

cskct
ekc(4c2

st2−|r−r
′|2)1/2

,

(9)
valid when the exponent is large. The correlation func-
tion Eq. (9) displays a striking growth of correlations
along a ‘light cone’ originating at a point halfway be-
tween r and r

′ and propagating at the spin wave velocity
cs. This is a familiar feature of spinodal instabilities in
relativistic theories [19]. The crossover between these
two types of behavior occurs at the value qf = q0/2,
where the maximum in the spectrum of unstable modes
kmax ≡ √

q0 − 2q goes to zero.
Next we discuss what happens if the quench is not in-

stantaneous, but rather crosses the transition in some fi-
nite time. For concreteness we take q(t) = q0 (1 − t/τQ),
where τQ measures the duration of the quench, and the
transition is crossed at t = 0. The result may be obtained
exactly in terms of Airy functions, but the following in-
tegral representation is more useful

〈f⊥(r, t)f †
⊥(r′, t)〉 =

nq0

2c2
stKZL⊥

F(t/tKZ, |r − r
′|/(cstKZ))

F(x, y) ≡ 1

π3/2

∫ ∞

0

du u−3/2 exp

[

ux − y2

4u
− u3

12

]

,



4

where we have introduced tKZ ≡
(

τQ/q2
0

)1/3
. This ex-

pression can then be evaluated in the saddle-point ap-
proximation. At |r−r

′| = 0 we get an exponential factor

exp
(

4
3 (t/tKZ)3/2

)

. At this point we have to invoke for

the first time the effect of the anharmonic interactions
between modes. Very crudely, their effect is to cut-off
the exponential growth of the magnetization. We shall
not try to discuss this process in detail, but the key point
is that it occurs at a time ∝ tKZ, where the constant of
proportionality may contain tKZ, but only logarithmi-
cally. Thus we readily see that the associated scale is

ξ(tKZ) ∝ cstKZ = cs

(

τQ/q2
0

)1/3
. This result is consistent

with the general arguments of Kibble and Zurek, imply-
ing a domain size scaling as (τQ)

ν
zν+1 , with mean field

values z = 1 and ν = 1/2 for the dynamic and correla-
tion length exponents [6].

The growth of the transverse magnetization is asso-
ciated with the appearance of vortices. As the popu-
lation of the unstable modes becomes large, the field
f⊥(r) can be treated as an effectively classical Gaus-
sian stochastic variable, with variance given by the cor-
relation functions calculated above [20]. Then the den-
sity of vortices can be estimated using the Halperin-Liu-
Mazenko formula to calculate the density of zeroes of
this classical field nV (t) = − 1

2π ∂2
rg′′(r, t)|r=0 [21, 22],

where g(|r − r
′|, t) ≡ 〈f⊥(r, t)f †

⊥(r′, t)〉/〈f⊥(0, t)f †
⊥(0, t)〉

is the normalized correlation function. For quenches
to qf < |c2|n it is immediately clear that the den-
sity is determined by kmax, as the spectrum of fluctu-
ations is essentially monochromatic at late times, and
nV (t) → k2

max/4π. In this case the vortices have a
core size of the same order as the scale of the mag-
netic order. For a quench to just below the transi-
tion, on the other hand, the asymptote Eq. (9) gives
nV (t) → 1

4π
kc

cst . This behavior continues until the growth
is saturated by the anharmonic terms, which happens
when |f⊥|2 ∼ 2n (q0 − q) /c̃2. Finally, in the case of the
finite time quench, we have nV ∝ ξ−2(tKZ).

In closing, we discuss the long-time behavior of the
system, once the transverse magnetization is comparable
to its equilibrium value. This regime is characterized by
the growth of the characteristic ordering scale and the
annihilation of topological defects, usually called coars-

ening. We distinguish two universality classes depending
on whether or not the order parameter is conserved [1]. In
the first case the domain size increases as ξ(t) ∝ t1/2 [30],
while in the second a t1/4 law is obeyed. In our system
these two cases correspond to a final value qf 6= 0 or
qf = 0 respectively. Note that for the shallow quench we
found the t1/2 behavior already at the linear level.

A further complication is that coarsening is usually
studied using models of dissipative dynamics, where en-
ergy is not conserved. On the other hand, coarse-graining
of a purely Hamiltonian system can give rise to such dy-
namics, at the expense of introducing a conserved energy

density to which the order parameter is coupled [23]. For
the case of a real scalar non-conserved order parameter,
Hamiltonian coarsening was examined Ref. [24], with the
conclusion that the t1/2 law was preserved (this case cor-
responds to Model C in the classification of Ref. [23]).
On the other hand, Ref. [25] studied coarsening in the
Gross-Pitaevskii equation, where energy and addition-
ally particle number are conserved (Model F), and found
results consistent with ξ(t) ∝ t. The dynamics described
by Eq. (7) corresponds to Model F, except at the particle-
hole symmetric point p = 0 that has been our main con-
cern, a special case called Model E.

I would like to thank John Chalker, Joel Moore, Sab-
rina Leslie, and Julien Kockelkoren for useful discussions.
After this work was finished, the preprint Ref. [26] ap-
peared, where the same experiment is discussed.
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