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We use a novel method based on the semi-classical analysis of σ-models to describe the phe-
nomenon of strong localization in quasi one-dimensional conductors, obtaining the density of trans-
mission eigenvalues. For several symmetry classes, describing random superconducting and chiral
Hamiltonians, the target space of the appropriate σ-model is a (super)group manifold. In these
cases our approach turns out to be exact. The results offer a novel perspective on localization.

PACS numbers: 72.15.Rn

I. INTRODUCTION

Beginning with the early work of Thouless1,2, quasi
one-dimensional conductors have provided a valuable
arena in which to explore the influence of quantum in-
terference effects on the transport properties of weakly
disordered phase coherent conductors. By the early 80’s,
a complete scaling theory of localization in multi-mode
wires had been formulated by Dorokhov3 (and devel-
oped later by Mello, Pereyra and Kumar4) as a Brow-
nian motion of eigenvalues of the transmission matrix
— the ‘DMPK equation’ (for a recent review see, e.g.,
Ref. 5). For several symmetry classes, analytic results
for the low moments of conductance were obtained in
both the metallic and strongly localized regimes5,6,7.
Lately, a third, and potentially more versatile approach
has been developed to investigate quantum transport
in (multi-terminal) disordered conductors. By formally
relating the transmission eigenvalue distribution to a
‘multi-component Green’s function’ (see below), Nazarov
has shown8 that known results in the metallic limit can
be inferred from the equations of motion of the average
quasi-classical Green function9,10,11.
The transport properties of a conductor are fully spec-

ified by the transmission matrix t
12. In particular, the

Landauer-Büttiker formula allows the conductance to be
expressed through eigenvalues Tn of the ‘squared’ trans-
mission matrix,

G =
e2

h
tr t†t =

e2

h

∑

n

Tn .

The statistics of the Tn follow the universal Dorokhov
distribution, valid in the metallic limit (i.e. where the
dimensionless conductance g ≡ hG/e2 ≫ 1):

ρ(T & e−2L/ℓ) =
〈∑

n

δ(T − Tn)
〉
=

g

2

1

T
√
1− T

. (1)

By solving the corresponding quasi-classical equation in

the diffusive limit, Eq. (1) has been established under
very general conditions. Yet, while the method intro-
duced by Nazarov is capable of describing accurately
the transmission eigenvalue distribution in the metallic
phase, the method fails to account for the phenomena of
weak and strong localization.

In recent years, the development of a field theoretic
technique to explore phase coherence phenomena in dis-
ordered conductors has exposed the strengths and limi-
tations of the quasi-classical scheme. Weakly disordered
conductors and superconductors can be classified into
one of ten symmetry classes13, their spectral and trans-
port properties specified by a field theory of nonlinear
σ-model type14,15. It was realized that within the for-
mally exact framework provided by the field theory, the
quasi-classical equations of motion represent a saddle-
point or mean-field approximation, involving only a sin-
gle field configuration16,17. Indeed, drawing on the sub-
stantial literature on the quasi-classical equations in the
superconducting context (the Eilenberger9 and Usadel11

equations), this identification simplified substantially the
analysis of physical realizations of the ‘novel symmetry’
classes of disordered superconductors introduced by Alt-
land and Zirnbauer15. The absence of localization in
the quasi-classical theory follows then from the neglect
of fluctuations about this field configuration.

Describing localization within the σ-model is however
far from trivial. While weak localization corrections to
transport can be developed as a systematic perturbation
theory, the transition to strong localization is signalled by
the growth of contributions non-perturbative in the con-
ductance. Indeed, a calculation by Rejaei18 of the exact
transmission eigenvalue distribution relied on a mapping
of the σ-model for the quasi one-dimensional system onto
a heat kernel (see also Ref. 19). Such an analysis affords
little intuition into the origin of localization within the
framework of the σ-model. In particular, can the transi-
tion (or, in quasi one-dimension, the crossover) to strong
localization be understood in terms of certain σ-model
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field configurations?
A preliminary answer to this question was provided in

an insightful work by Muzykantskii and Khmel’nitskii16.
Using the field theoretic approach, it was demonstrated
that the long-time response of a weakly disordered quasi
one-dimensional wire to a voltage step was controlled by
spatially inhomogeneous saddle-point field configurations
of the σ-model action. Non-perturbative in the conduc-
tance, these field configurations were associated with rare
“anomalously localized” states embedded deep within the
metallic phase. Whether these states provided a carica-
ture of states near the Anderson transition remains to
date the subject of debate. Later, in a related activity,
it was shown the nucleation of localized quasi-particle
states inside the gap of a weakly disordered symmetry
broken superconductor were ascribed to spatially inho-
mogeneous saddle-point configurations of the action20.
In this paper we will show that, for a range of symme-

try classes, the physics of strong localization is captured
exactly by the inclusion of a set of new saddle points
combined with their associated Gaussian fluctuations.
This recalls a previous investigation by Andreev and Alt-
shuler21 of energy level correlations in symmetry broken
(zero-dimensional) chaotic systems — random matrix en-
sembles belonging to the unitary symmetry class. There
it was shown that the two-point correlator of the density
of states could be fully recovered from the inclusion of
two saddle points together with their associated Gaus-
sian fluctuations. In both cases, the coincidence can be
traced to the property of semiclassical exactness shared
by the different σ-model field theories. The aim of the
present paper is to elucidate this principle in the quasi
one-dimensional system comparing results for transmis-
sion eigenvalue distributions to those obtained from heat
kernel methods. The novel view of localization presented
here may inform the treatment of more complicated prob-
lems.
Following Rejaei, our analysis rests on a relation which

allows the ensemble average of the generating function of
the transmission matrix tt

† (at a particular energy) of a
quasi one-dimensional sample

Z(φ, θ) =

〈
det(1 − sin2(θ/2)tt†)

det(1 − sinh2(φ/2)tt†)

〉
, (2)

to be presented as a partition function of a nonlinear σ-
model of the appropriate symmetry class. The density
of transmission eigenvalues may then be extracted using
the relation

F (φ) ≡ ∂

∂θ
Z(φ, θ)

∣∣
θ=iφ

=
∑

n

〈 −i sinhφ
coshφn + coshφ

〉
, (3)

where Tn = 1/ cosh2(φn/2) denote the eigenvalues of the
matrix tt

†. From this function one can infer the trans-
mission eigenvalue density through the relation

ρ(φ) ≡
∑

n

〈
δ(φ−φn)

〉
=

1

2π

(
F (φ+iπ)−F (φ−iπ)

)
. (4)

The moments of the transmission matrix can be cast in
terms of the retarded and advanced Green’s functions
GR/A ≡ (ǫ ± iδ −H)−1 of the microscopic Hamiltonian
of the wire as

tr(tt†)n = trr(v̂LG
A
ǫ v̂RG

R
ǫ )

n ,

where v̂L/R denotes the current operator through left and
right cross-sections at x = 0 and x = L respectively, and
the trace on the right hand side runs over spatial coordi-
nates. Following Nazarov, it is helpful to note that the
determinants in Eq. (2) can be recast in terms of a multi-
component Green’s function according to the relation

det(1− γ1γ2tt
†) = det(1 − γ1γ2v̂LG

A
ǫ v̂RG

R
ǫ )

= det

(
1 γ1G

R
ǫ v̂L

γ2G
A
ǫ v̂R 1

)

∝ det

(
ǫ−H + iδ γ1v̂L
γ2v̂R ǫ−H − iδ

)
,

where, for example, in the case of the numerator of (2),
γ1γ2 ≡ sin2(θ/2) . Thus the generating function Z(φ, θ)
may be related to the Green’s function of an enlarged
Hamiltonian, which includes an off-diagonal ‘vector po-
tential’.

With this representation in hand, the outline of the re-
mainder of the paper is as follows. In the next section we
present a complete analysis of the localization properties
of Class CI, one of the superconducting symmetry classes
introduced by Altland and Zirnbauer15. We outline the
σ-model description of this symmetry class and repro-
duce Nazarov’s calculation in this context, before intro-
ducing the full set of saddle-point trajectories - geodesics
on the target space - and performing a complete semi-
classical calculation. From the latter we will extract the
transmission eigenvalue density and mean conductance.
The exactness of the results obtained are then verified by
heat kernel methods. In the following section, the tech-
niques developed above will be applied to two additional
symmetry classes that are amenable to such a treatment.
Finally, in the last section, we will draw conclusions.

II. CLASS CI

Superconductors which exhibit both time reversal sym-
metry and spin rotation invariance belong to symmetry
class CI. By introducing the familiar Nambu doublet of
electron and hole operators in what we will refer to as the
‘particle-hole’ (ph) space, in the mean-field approxima-
tion, the quasi-particle Gor’kov or Bogoliubov-de Gennes
Hamiltonian Ĥmf can be written as

Ĥmf =
1

2

∑

ij

(
ĉ†i↑ ĉi↓

)
Hij︷ ︸︸ ︷(

hij ∆ij

∆ij −hij

)(
ĉj↑
ĉ†j↓

)
,
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where hij and ∆ij represent real symmetric matrix
elements corresponding to the non-interacting single-
particle Hamiltonian of the quasi one-dimensional dis-
ordered wire and the superconducting order parameter
respectively. With this structure, the matrix Hamilto-
nian H satisfies the symmetry relations

H = HT = −CHTC−1 C =

(
0 1
−1 0

)

ph

, (5)

which in turn implies the identity

GR
ǫ = −C(GA

−ǫ)
T C−1 ,

between the retarded and advanced Green’s functions.

A. Partition function

With this definition, the ratio of determinants which
specifies the generating function (2) can be conveniently
expressed via a supersymmetric field integral, with the
numerator arising from a fermionic integral and the de-
nominator from its bosonic counterpart. Since these are
not identical, the corresponding partition function will
inherit boundary conditions which break the supersym-
metry. To identify the soft diffusion modes of the super-
conducting system, it is convenient to effect a doubling of
the field space of the supervectors ψ to include a ‘charge-
conjugation’ (cc) space22

Ψ =
1√
2

(
ψ

Cψ̄T

)

cc

Ψ̄ =
1√
2

(
ψ̄,−ψTC−1

)
cc
. (6)

Focusing on the transmission eigenvalue distribution at
ǫ = 0, we notice that if GR

0 ∼ 〈ψψ̄〉 is the (1, 1) compo-
nent of the matrix Green’s function G in the cc space,
then the advanced component GA

0 ∼ −C〈ψ̄TψT 〉C−1 is
just the (2,2) component. Thus the enlarged structure

required is just the usual cc space. Altogether, this leads
to the representation

det(1 − γ1γ2tt
†)

det(1− ζ1ζ2tt†)

=

∫
DΨDΨ̄ exp

[ i
2

∫
drΨ̄

G−1

︷ ︸︸ ︷
[iδΣ3 −H] Ψ

]

where

H = H ⊗ 11bf ⊗ 11cc (7)

+v̂LΓ1 ⊗ Σ+ ⊗ 11ph + v̂RΓ2 ⊗ Σ− ⊗ 11ph ,

where Γ1,2 = diag(ζ1,2, γ1,2)bf , and Σi denote the Pauli
matrices in the cc space.
Once cast in the form of a functional field integral, it

is a straightforward (if somewhat lengthy) and standard
procedure to show that the low-energy properties of the
partition function are contained with an effective field
theory of nonlinear σ-model type (for a detailed discus-
sion of the explicit derivation, we refer to one of the many
standard references, e.g. Ref.17,22). Two points should be
remarked upon. The first is that, since Class CI has two
symmetries – particle-hole and time reversal (tr) symme-
try (see Eq. 5) – the supervector needs to be doubled
twice. The size of the supermatrix field Q(r) that ap-
pears at an intermediate stage in the derivation is thus
16 × 16 (ph×cc×tr×bf), but this is quickly reduced to
the 8×8 field q by Q = σ3q on the saddle-point manifold
(σi denote the Pauli matrices in ph space), with the ph
space then disappearing from view. Secondly, following
Rejaei, the ‘vector potential’ associated with the coupling
of the wire to the external leads, can be absorbed into a
rigid boundary condition on the field integral. Taking the
metallic contacts at x = 0, L to be to clean normal con-
ducting leads, the ensemble averaged partition function
assumes the form (with ~ = 1)

〈
det(1− γ1γ2tǫt

†
ǫ)

det(1 − ζ1ζ2tǫt
†
ǫ)

〉
=

∫ q(L)=SΣ3S
−1

q(0)=Σ3

Dq exp
(
πνD

8

∫
drSTr [∇q]2

)
, (8)

where the field integral is over 8 × 8 supermatrix fields
q subject to the nonlinear constraint q2(r) = 11. Fi-
nally, the supersymmetry breaking source terms enter
the boundary condition, through the rotation matrix

S = exp (iΓ2 ⊗ Σ− ⊗ 11tr) exp (iΓ1 ⊗ Σ+ ⊗ 11tr) .

Specifically, if we choose

γ1 =
1

2
sin θ , γ2 = tan θ/2

ζ1 =
i

2
sinhφ , ζ2 = i tanhφ/2 ,

then the boundary condition at x = L is q(L) =
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diag(qbb(L), qff(L))bf where

qbb(L) =

(
coshφ sinhφ
− sinhφ − coshφ

)

cc

⊗ 11tr ,

qff(L) =

(
cos θ −i sin θ
i sin θ − cos θ

)

cc

⊗ 11tr , (9)

and we have obtained the required form of Rejaei’s rela-
tion (2). An alternative approach that matches Nazarov’s
orginal formulation is to use the explicit expression for
F (φ) that follows from Eq. (3) and relate it directly to
the Green’s function in the cc space, i.e.

F (φ) = − i

2
sinhφ

〈
tr
[
tt

†
(
1 + sinh2(φ/2)tt†

)−1
]〉

=
〈
trr
[
v̂RG12

bb

]〉 ∣∣
θ=iφ

= − iπνD
2

A
〈
trtr (q∂xq)

12
bb

∣∣
x=0

〉
q

∣∣
θ=iφ

, (10)

where 〈· · · 〉q denotes an average with respect to the σ-
model action (8), A is the cross-sectional area, and ν is
the single particle density of states. trtr denotes the trace
over the tr space. Henceforth, we will work only with the
one-dimensional field q(x), assuming that the width of
the wire is much smaller than the localization length.

B. Nazarov’s calculation

To develop a theory of localization from the field inte-
gral, it is first useful to establish contact with the theo-
retical framework introduced by Nazarov. As discussed
in the introduction, the quasi-classical theory formulated
by Nazarov is contained within the saddle-point structure
of the present action: Specifically, a variation of the ac-
tion with respect to q subject to the nonlinear constraint,
q2 = 11, obtains the saddle-point equation

∂x(q∂xq) = 0,

which expresses conservation of the matrix current q∂xq.
Indeed, associating q with the average quasi-classical
Green function, the saddle-point equation can be inter-
preted as the generalization of the quasi-classical equa-
tion derived in Nazarov’s early work to the superconduct-
ing wire.
The simplest solution satisfying the given boundary

conditions is block diagonal in the bf space and takes the
form

qbb(x) =

(
cosh φx

L sinh φx
L

− sinh φx
L − cosh φx

L

)

cc

⊗ 11tr,

qff(x) =

(
cos θx

L −i sin θx
L

i sin θx
L − cos θx

L

)

cc

⊗ 11tr , (11)

If one inserts this solution into Eq. (10), and neglects
field fluctuations around the saddle point, one finds

F (φ) = −iπνDAφ/L.

Then, making use of Eq. (4), one can straightforwardly
recover the Dorokhov distribution (1) for a wire of di-
mensionless conductance g = 2πνDA/L.
However, when derived from the supersymmetric field

theory, one can see that the saddle-point equation
presents not just one solution, but a whole family of so-
lutions in the compact fermionic sector

q
(n)
ff (x) =

(
cos (θ+2πn)x

L −i sin (θ+2πn)x
L

i sin (θ+2πn)x
L − cos (θ+2πn)x

L

)

cc

⊗ 11tr,

n ∈ Z .(12)

Thus we see that even at the level of a purely semi-

classical analysis, Nazarov’s treatment is missing two el-
ements; corrections associated with fluctuations around
the conventional saddle-point solution (11), and so-
lutions (12) that loop multiply around the compact
fermionic sector. We will show that these two ‘channels’
of corrections are, respectively, responsible for the phe-
nomenon of weak localization — as, indeed, one might
have guessed from the connection between the role of
fluctuations in the σ-model and diagrammatic perturba-
tion theory — and strong localization.
To uncover this relation, in the following we will under-

take the semi-classical analysis taking into account fluc-
tuations of the matrix fields at quadratic order around
both the conventional and the non-trivial saddle-point
field configurations.

C. Semi-classical calculation

To perform the field integration over the fluctuations,
it is necessary to review the structure of the target man-
ifold. For the minimal (n = 1) nonlinear σ-model asso-
ciated with the symmetry class CI, the target space —
spanned by matrices q = wΣ3w

−1 — turns out13 to be in

one-to-one correspondence with G = ÕSp(2|2), by which
we mean the Lie group R+ × SU(2) extended to an or-
thosymplectic Lie supergroup. This group structure of
the target manifold is the reason for the exactness of the
semi-classical approximation23,24.
The correspondence between q and g ∈ G is described

in the Appendix. The space of matrices (9) parameter-
ized by φ and θ corresponds to the maximal Abelian sub-
group A ∈ G

a = diag(eφ, e−φ, eiθ, e−iθ) ∈ A ,

while, in terms of group elements g ∈ G, the generating
function is

Z(φ, θ) =

g(T )=a(φ,θ)∫

g(0)=1

Dg exp


−1

8

T∫

0

STr
[
g−1ġ

]2
dt


 .

(13)
Here we have switched to the dimensionless variables t ≡
x/ξ, T ≡ L/ξ, where ξ ≡ 2πνDA. (Note that, with this
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definition, T = 1/g.) With this parametrization, the set
of saddle-point solutions discussed in the previous section
corresponds to the geodesic trajectories of free particle
motion

a
(n)
t (φ, θ) = diag(eφt/T , e−φt/T , eiθnt/T , e−iθnt/T ), (14)

where θn = θ + 2πn with n ∈ Z. These configurations
are associated with the classical action

S
(n)
cl =

1

8

T∫

0

STr[(a
(n)
t )−1ȧ

(n)
t ]2 dt = (φ2 + θ2n)/4T

To evaluate the contribution from Gaussian fluctu-
ations, it is helpful to set gt = a

(n)
t g̃t, and express

the element g̃t through the exponential parametrization
g̃t ≡ expXt, with boundary conditions X0 = 0 = XT .
Matrices X satisfying the osp(2|2) Lie algebra condition
X = −εXTε−1 with ε = diag(σx, iσy)bf may be written
as

X =



d 0 α β
0 −d γ δ
δ β e b
−γ −α c −e


 . (15)

Then, to get the desired target space with the non-
compact boson-boson sector Mbb = R+, and compact
fermion-fermion sector Mff = SU(2), one must take the
variable d to be real, the variable e to be imaginary, and
the complex variables b and c to be related by the con-
dition c = −b̄. The functional integration measure is
trivial, Dg = Dg̃ = DX + . . ., up to corrections (of order
X3) that will not affect the present calculation.
Using the parametrization for X given in Eq. (15) one

obtains the quadratic action

Sq =
1

8

∫
dt STr

(
Ẋ2 + Ẋ[(a

(n)
t )−1ȧ

(n)
t , X ]

)

=
1

4

∫
dt

(
ḋ2 − ė2 − ḃċ− iθn

T

(
bċ− ḃc

)

+2α̇δ̇ +
φ− iθn
T

(αδ̇ − α̇δ)

+2γ̇β̇ − φ+ iθn
T

(γβ̇ − γ̇β)

)
.

Performing the Gaussian functional integral over d and
e is the same as computing the kernel for free particle
motion on the two-dimensional Euclidean space LieA,
and the result is Det−1(−∂2t ). Performing the remain-
ing Gaussian functional integrals gives determinants in
the denominator (bosons: b, c = −b̄) and numerator
(fermions: α, δ and γ, β). Collecting all the determinants,
one finally obtains the total fluctuation contribution to
the partition function,

Det
(
−∂2t − φ+iθn

T ∂t

)
Det

(
−∂2t + φ−iθn

T ∂t

)

Det (−∂2t )Det
(
−∂2t + 2iθn

T ∂t
) .

The determinants are to be evaluated on the Hilbert
space of square-integrable functions L2([0, T ]) with
Dirichlet boundary conditions. If z is some complex num-
ber, the operator Dz = −∂2t + 2(z/T )∂t on that Hilbert
space has eigenfunctions sin(kπt/T ) ezt/T (k ∈ N), with
eigenvalues

(
(kπ)2 + z2

)
/T 2, so its (unregularized) de-

terminant is given by

DetDz =

∞∏

k=1

(
(kπ)2 + z2

)
/T 2 .

Taking the logarithmic differential (to kill the z–
independent infinity) one obtains

δ lnDetDz =

∞∑

k=1

2zδz

(kπ)2 + z2

=

(
−1

z
+
∑

k∈Z

z

(kπ)2 + z2

)
δz

=
(
−z−1 + coth z

)
δz = δ(ln sinh z − ln z) .

Therefore,

DetDz =
sinh z

z
× DetD0 ,

and the above ratio of four determinants gives

sinh
(
1
2 (φ+ iθn)

)

1
2 (φ+ iθn)

sinh
(
1
2 (φ− iθn)

)

1
2 (φ − iθn)

(
sin θn
θn

)−1

.

Finally, when combined with the exponential of the clas-
sical action and summed over n, one obtains the following
expression for the partition function:

ZT (φ, θ) =
∑

n∈Z

sinh
(
1
2 (φ + iθn)

)

1
2 (φ+ iθn)

sinh
(
1
2 (φ − iθn)

)

1
2 (φ− iθn)

× θn
sin θn

e−(φ2+θ2

n)/4T . (16)

Note that the operator −∂2t + (2iθn/T )∂t starts to ex-
hibit negative eigenvalues as soon as |θn| exceeds π. This
means that the Gaussian functional integral over b and
c = −b̄ does not exist in those cases. Thus what we have
done— evaluating the functional integral in the Gaussian
approximation around all of the saddle points (without
paying attention to question of existence), and summing
contributions — was a purely formal calculation. Nev-
ertheless, the answer obtained in this way turns out to
be exact! Indeed, the validity of this expression can be
established both directly and indirectly. In the follow-
ing, we will motivate this conclusion by investigating the
transmission eigenvalue density and the mean conduc-
tance from the partition function. Then, by interpreting
the field integral as a heat kernel, we will find an alter-
native exact method of computation.
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D. Eigenvalue density

With the partition function in hand, it is a straightfor-
ward matter to compute the eigenvalue density making

use of the relations (2)-(4),

ρCI
T (φ) =

1

2T
− 1

2(φ2 + π2)
−
∑

n6=0

e−n(n+1)π2/T

2π2n
Re

φ+ iπ(2n+ 1)

φ+ iπ(n+ 1)
eiπnφ/T . (17)

The first term of this expression is just the Dorokhov
distribution, and originates from the n = 0 (Nazarov’s)
configuration. In this context, the second term simply
denotes the weak localization correction associated with
the n = 0 configuration. All higher-order terms of the
perturbation expansion in powers of T = 1/g turn out to
vanish identically, a direct manifestation of semi-classical
exactness. Indeed, the remaining terms in the result (17)
depend non-analytically on T as e−1/T , and arise from
the non-trivial saddle-point configurations.
A non-trivial check on the validity of the expression fol-

lows from the requirement that ρT (0) = 0 for all T > 0.
(One can infer this condition from the joint probabil-
ity density given by Brouwer et al.6.) The plot of the
density function ρCI

T (x) in Fig. 1 shows the characteris-
tic ‘crystallization’ of transmission eigenvalues associated
with the onset of localization. The largest Tn (smallest
φn) eigenvalue crystallizes at φ = 2T , corresponding to
T ∼ 4e−2T = 4e−2L/ξ if L≫ ξ.

E. Mean conductance

A second, and more direct way of inferring exponen-
tial localization is to investigate the mean (spin) conduc-
tance of the superconducting wire. The mean conduc-
tance 〈

∑
Tn〉 ≡ C(T ) of the thick disordered wire can be

obtained by integrating T = 1/ cosh2(φ/2) against the
eigenvalue density ρt(φ)dφ with the result

C(T ) =
1

T
− 1

3
+

∞∑

n=1

(
4

T
+

2

π2n2

)
e−n2π2/T . (18)

On applying the rescaling C(T ) → 4C(4T ), the latter
agrees with the expression derived in Ref. 6. The leading
term T−1 is the Ohmic contribution, while the constant
−1/3 represents the weak localization correction.
To extract the large-T asymptotics and demonstrate

exponential localization, the above expression for C(T )
is inconvenient. Instead, it is convenient to implement an
integral transform of the expression which brings it to a
form in which the large-T asymptotics can be developed.
Making use of the identities (1+2/x) e−1/x = −

∫
(1/x2−

2/x3) e−1/xdx and
∑∞

n=1 n
−2 = π2/6, one may easily

show that

C(T ) =
∑

n∈Z

∫ ∞

T

(1/τ2 − 2π2n2/τ3) e−n2π2/τdτ .

Noting that the function k 7→ (1/τ2 − k2/2τ3) e−k2/4τ

is the Fourier transform of x 7→ 2x2e−x2τ/
√
πτ , Poisson

summation yields

C(T ) =
4√
π

∞∑

l=1

l2
∫ ∞

T

e−l2τ dτ√
τ
.

Finally, introducing the complement of the error func-
tion,

erfc(z) =
2√
π

∫ ∞

z

e−s2ds = 1− erf(z) ,

the expression for C(t) may be brought to the final form

C(T ) =
1

T
− 1

3
+

∞∑

n=1

(
4

T
+

2

π2n2

)
e−n2π2/T

= 4

∞∑

l=1

l erfc(l
√
T ) . (19)

While the original expression provides access to the
small-T asymptotics, the second one gives easy access
to the large-T behaviour, viz.

C(T )
T→∞−→ 4√

πT
e−T .

Recalling T = L/ξ, the latter shows the characteristic
exponential dependence of localization with a localization
length ξ.
Consideration of the eigenvalue density and mean con-

ductance provide strong circumstantial evidence that the
expression derived for the generating function is exact.
However, to emphasize the validity of the semi-classical
expansion, it is useful to provide an explicit calculation of
the partition function as a solution of the Euclidean-time
‘Schrödinger’ equation or heat kernel.
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FIG. 1: Transmission eigenvalue densities for the classes CI and DIII at T = 0.01 (weak localization – dashed line) and T = 20
(strong localization – solid line). Note that although eigenvalue ‘crystallization’ occurs in both classes, localization in class
DIII is absent due to the persistence of an eigenvalue near φ = 0 (or T = 1).

F. Heat Kernel

By canonical quantization, the path integral with
the Lagrangian 1

8STr (g
−1ġ)2 becomes the ‘Schrödinger

equation’ for free-particle quantum motion on G. The
Schrödinger operator is the negative of the Laplace-
Beltrami operator△ (or Laplacian for short) on G. Thus
the heat kernel satisfies a Schrödinger-like equation which
is the diffusion (or heat) equation on G:

∂tW (g, g′; t) = △W (g, g′; t) (t > 0) ,

where △ acts on the left argument of W . The reduction
from the full heat kernel to the radial function ωt(φ, θ)
on the maximal Abelian subgroup A takes the diffusion
equation into

∂tωt(φ, θ) = (△ωt)(φ, θ) (t > 0) ;

where we continue to denote the radial part of the Lapla-
cian by△ for simplicity. SinceG has superdimension zero
(there being the same number of bosonic and fermionic
degrees of freedom) the short-time asymptotics of the
heat kernel is given by

ωt(φ, θ)
t→0+−→ e−(φ2+θ2)/4t .

(In dimensions d 6= 0, the Gaussian would be preceded
by a factor (4πt)−d/2.)
To proceed, we must draw on some basic facts from

the geometry and analysis of the supermanifold G:

• Diagonalization of matrices g (i.e. g = hah−1 with
a ∈ A) defines a polar decomposition of G. By this
decomposition, the G-invariant Berezin integration
measure for G determines a radial integration mea-
sure Jdxdy, which is positive on the Weyl chamber
chamber [0,∞]× [0, π] ⊂ LieA.

• By a standard formula25 from the theory of Lie
groups and symmetric spaces (for a recent pedagog-
ical review see, for example, Ref. 26), the measure
function J for the case at hand is given by

J =
sin2 θ

sinh2 ((φ+ iθ)/2) sinh2 ((φ− iθ)/2)
.

• Finally, the Laplacian on radial functions is given
by

(△ωt)(φ, θ) =
(
J−1∂φJ∂φ + J−1∂θJ∂θ

)
ωt(φ, θ) .

By introducing complex coordinates z = (φ+iθ)/2 and
z̄ = (φ−iθ)/2 it is apparent that the analytic square root
of the measure function,

J1/2 =
sin(iz̄ − iz)

sinh(z) sinh(z̄)
= i

cosh(z)

sinh(z)
− i

cosh(z̄)

sinh(z̄)
,

is harmonic: (∂2φ + ∂2θ )J
1/2 = 0. Using this property one

can easily verify that the radial part of the Laplacian can
be cast in the form

(△ωt)(φ, θ) = J−1/2(∂φ∂φ + ∂θ∂θ)J
1/2ωt(φ, θ) .

It therefore follows that the product Et = J1/2ωt satisfies
the Euclidean heat equation

∂tEt = (∂2φ + ∂2θ )Et .

The Euclidean heat kernel in two dimensions is known
to be (4πt)−1e−(φ2+θ2)/4t. However, this is not the solu-
tion we want here: As mentioned earlier, the heat ker-
nel ωt(φ, θ) is subject to zero-dimensional small-t asymp-

totics, ωt(φ, θ) → e−(φ2+θ2)/4t. This short-time behavior
is achieved with the choice

Ẽt =
4θ

φ2 + θ2
e−(φ2+θ2)/4t .

To confirm that Ẽt satisfies the Euclidean heat equation,
one uses the identity ∂2φ + ∂2θ = ∂z∂z̄ and

Ẽt = −2 Im(z−1) e−zz̄/t .

The solution ω̃t = J−1/2Ẽt thus obtained is not yet 2π-
periodic in θ and hence does not lift to a function on the
Abelian group A = R+ ×U(1). Enforcing periodicity by
summing over images, we obtain:

ωt(φ, θ) = J−1/2(φ, θ)
∑

n∈Z

4θn
φ2 + θ2n

e−(φ2+θ2

n)/4t ,
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where θn = θ+2πn as before. This is the correct answer,
and it is easily seen to coincide exactly with the semi-
classical result for the partition function derived above.
As emphasized above, the coincidence of the semi-

classical expansion with the exact expression for the par-
tition function is a particular feature of the group mani-
fold structure of the σ-model for the symmetry class CI.
As a result, we can deduce the existence of other novel
symmetry classes where the transport properties of the
quasi one-dimensional system can be inferred from the
structure of the semi-classical expansion.

III. GENERALIZATIONS

Having established the principle, we now turn to con-
sider extensions of the present scheme to other symmetry
classes. Here we consider classes DIII and AIII:

A. Class DIII (even)

Symmetry DIII is realized15 in superconductors which
exhibit time-reversal symmetry but where the SU(2) spin
rotation symmetry is broken by a spin scattering mecha-
nism such as a spin-orbit interaction. The latter presents
a critical testing ground for the present theory as it has
already been established by Brouwer et al.6 that expo-
nential localization is absent generically in quasi one-
dimensional systems of this symmetry class.
For the symmetry class DIII, the corresponding target

space of the nonlinear σ-model is a Riemannian sym-
metric superspace of type C|D13. This means that we
are to work again with the complex orthosymplectic Lie
supergroup, G = OSp(2n|2n), but now one must select
a non-compact symmetric space Sp(2n,C)/USp(2n) in

the boson-boson sector and the compact group SO(2n)
in the fermion-fermion sector. For n = 1 these spaces
are isomorphic to H3 (the three-hyperboloid) and U(1)
respectively. A maximal commuting subgroup A =
R+ × U(1) is still formed by diagonal matrices a =
diag(eφ, e−φ, eiθ, e−iθ) with φ ∈ R and θ ∈ [−π, π], so the
saddle-point configurations (14) are unchanged. Only the
fluctuation contribution differs.

The parametrization of the target space by the expo-
nential mapping g̃ = expX is the same as for class CI
but with the boson-boson and fermion-fermion sectors
interchanged:

X =



e b δ β
c −e −γ −α
α β d 0
γ δ 0 −d


 ,

where d is now imaginary, e real, and c = b̄. In view of the
duality (by exchange of the compact and non-compact
sectors) connecting the nonlinear σ-models for the classes
CI and DIII, all calculations for DIII are very similar to
those for CI and, for brevity, we simply quote the results
here. The partition function, obtained by performing
the sum over geodesics together with the integral over
Gaussian fluctuations, is given by

ZT (φ, θ) =
∑

n∈Z

sinh
(
1
2 (φ + iθn)

)

1
2 (φ+ iθn)

sinh
(
1
2 (φ − iθn)

)

1
2 (φ− iθn)

× φ

sinhφ
e−(φ2+θ2

n)/4T . (20)

From Rejaei’s relation, the corresponding density of
transmission eigenvalues is then given by

ρDIII
T (φ) =

1

2T
+

1

2(φ2 + π2)
−
∑

n6=0

e−n(n+1)π2/T

2π2n
Re

φ+ iπ

φ+ iπ(n+ 1)
einπφ/T . (21)

A plot of this function in Fig. 1 shows the ‘crystallization’
of transmission eigenvalues for t ≫ 1. Yet, exponential
localization does not take place, as ρT (φ) peaks at φ = 0
(maximal transmission), and the peak amplitude decays
only algebraically with increasing T .
Turning to the mean conductance, the partition func-

tion yields the following expression:

C(T ) =
1

T
+

1

3
−

∞∑

n=1

2

π2n2
e−n2π2/T

=
2√
πT

+
2√
π

∞∑

l=1

∫ ∞

T

e−l2τ dτ

τ3/2
. (22)

The first expression agrees with the result of Ref. 6; the
second is obtained from it by Poisson resummation. The
first two terms, Cpert(T ) = t−1 + 1/3, represent the
Ohmic and weak anti-localization terms that can be com-
puted from a standard perturbation theory for the mean
conductance. As with symmetry class CI, higher-order
corrections from the perturbative expansion vanish iden-
tically. All non-zero corrections are non-perturbative and
arise from the non-trivial geodesics in the compact sector.
The second expression in Eq. (22) presents an anomalous
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diffusive asymptotics for large T = L/ξ:

C(T ) ≈ 2√
πT

(T ≫ 1) ,

a feature already seen in Ref. 6.
Finally, expressed in the form of the heat kernel, the

solution for class DIII is trivially related by the duality
discussed earlier and the validity of the expression for the
partition function above may be confirmed straightfor-
wardly. As a final application of semi-classical exactness,
we turn now to one of the chiral symmetry classes.

B. Class AIII

This symmetry class is relevant to the low-energy
physics of the chiral Dirac operator27 and to the ran-
dom flux model28. Lately, it has been discussed29,30

in the context of the quasi-particle properties of a d-
wave superconductor subject to a smooth random poten-
tial. Previous studies of quasi one-dimensional systems
in this class31,32,33,34 have revealed a surprisingly rich be-
haviour, including localization-delocalization transitions
with a number of critical points.

1. Rejaei relation

Before exploring the properties of the nonlinear σ-
model action, it is first necessary to confirm the form of
Rejaei’s relation for this symmetry class. For this we refer
to the σ-model formulation of the bond disordered quasi
one-dimensional chain given by Altland and Merkt34. We
consider N chains of 2M ≫ N sites with hopping ma-

trix element t
(m)
h = 1 + (−)ma along the chains between

sites 2m and 2m + 1, where a is a ‘staggering’ parame-
ter. In the following, we suppose that a weak disorder
potential (which, further, lifts time-reversal symmetry)
of strength ≪ 1 couples the chains. We view the single
particle Hilbert space as the product H = C2⊗CN ⊗CM ,
with the first factor referring to the odd and even num-
bered sites along the chain.
The sublattice symmetry of the Hamiltonian translates

to the condition H = −Σ3HΣ3, where Σi represent the
Pauli matrices in this odd/even subspace. From this sub-
lattice symmetry there follows the relation

GA
−ǫ = −Σ3G

R
ǫ Σ3 .

The corresponding current operator is simply given by
Σ2/2 (if we ignore the disorder and staggering, or evalu-
ate it in the clean, unstaggered leads). Thus the moments
of the transmission matrix at zero energy are given by

tr(t0t
†
0)

n = trH(v̂LG
A
0 v̂RG

R
0 )

n

= trH(P1Σ2G
A
0 PMΣ2G

R
0 )

n

= −trH(P1Σ1G
R
0 PMΣ1G

R
0 )

n, (23)

where Pm projects onto the 2mth site of each chain. It
seems that these moments cannot in general be presented
as the coefficients in some expansion of a functional deter-
minant. The average conductance (n = 1) may however
be obtained as the φLφR coefficient of the determinant
of a hamiltonian with hopping eiφL between the 1st and
2nd sites, and eiφR between the 2M − 1th and 2M th sites
(since hopping is described by a Σ1 term in the Hamil-
tonian).

We may thus study the usual partition function

ZT (φ, θ) =

gT =a(φ,θ)∫

g0=1

Dg exp


−1

4

T∫

0

Ldt


 ,

for a(φ, θ) = diag
(
eiφ, eiθ

)
(the matrix g being 2 × 2).

The conductance can be then identified with the coeffi-
cient C(T ) in the expansion

ZT (φ, θ) = 1 + C0(T )(φ− iθ)− C(T )(φ2 + θ2)/4

+C1(T )(φ− iθ)2 + . . . (24)

2. Semi-classical calculation

The most general nonlinear σ-model Lagrangian for
quasi one-dimensional systems belonging to class AIII
(and in suitable units of length) depends on two param-
eters u, v:

L = STr (g−1ġ)2 + 4v STr g−1ġ − u(STr g−1ġ)2 .

The target space of the nonlinear σ-model for this class13

is of type A|A and is obtained from the complex Lie su-
pergroup GL(n|n) by picking Mbb = GL(n,C)/U(n) in
the boson-boson sector and Mff = U(n) in the fermion-
fermion sector. For n = 1 these are GL(1,C)/U(1) ≃ R+

and U(1) respectively. The exponential parametrization
g̃ = expX of the target space is achieved by setting

X =

(
p α
β iq

)

with real commuting variables p, q and anti-commuting
variables α, β. Again, a(φ, θ) parameterizes the maxi-

mal Abelian subgroup. Based on the geodesics a
(n)
t =

diag
(
eφt/T , eiθnt/T

)
with θn = θ+2πn, the semiclassical

approximation for ZT (φ, θ) is found to be
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ZT (φ, θ) =
∑

n∈Z

(−1)n
sinh

(
1
2 (φ− iθ)

)

1
2 (φ− iθn)

e−v(φ−iθn)−[φ2+θ2

n−u(φ−iθn)
2]/4T . (25)

Expanding the result above for the partition function,
and using Eq. (24) gives

C(T ) =
1

T
+

2

T

∞∑

n=1

(−1)n cos(2πnv) e−(1+u)n2π2/T

=
1√

πT (1 + u)

∑

l∈Z

e−(l+v−1/2)2T/(1+u) , (26)

where the second expression is obtained by Poisson re-
summation of the first.
The result (26) depends periodically on the parameter

θ ≡ 2πv with period 2π. In fact, θ has the meaning of a
topological angle. From Ref. 34 we know that tuning θ
from 0 to 2π amounts to changing by two the number of
channels (which is assumed to be large in order for the
σ-model approximation be valid). In terms of the bond
disordered chains discussed earlier

θ = π (N − f) mod 2π,

where f is the staggering parameter a scaled by the
strength of the disorder. We see that without staggering,
a delocalized state appears only for odd channel num-
ber. The localization length diverges with critical expo-
nent 1 as the staggering approaches the critical values
f = N − 1 (mod 2).
If class AIII is realized by Dirac fermions in a random

Abelian gauge field, the parameter u > 0 measures the
strength of the gauge disorder. Although the Lagrangian
L at first sight would seem to become unstable at u = 1
(the coefficient of ṗ2 becomes negative there), this is not
really so. What matters is the full quadratic form

Lv=0 = (1 − u)ṗ2 + (1 + u)q̇2 + 2iuṗq̇ + odd variables ,

which has the Jordan normal matrix form

(
1 u
0 1

)
, and is

invertible for any u. In fact, the final result (26) reveals
a smooth dependence of the mean conductance on u for
all physical values (u > 0) including the fake singularity
u = 1.

3. Heat Kernel

Finally, seeking an exact solution through the heat ker-
nel, an exact calculation of ωT (φ, θ) is still possible as the
Hamiltonian H obtained by canonical quantization from
L can once again be transformed to Euclidean form:

H = −J−1/2 (∂φ∂φ + ∂θ∂θ + 2v(∂φ − i∂θ)

+u(∂φ − i∂θ)
2
)
J1/2 ,

with J = 1/ sinh2
(
1
2 (φ − iθ)

)
. By solving the differential

equation ∂tωt = −Hωt with the appropriate δ-function
initial conditions at t = 0+, we exactly recover the semi-
classical answer (25).

IV. CONCLUSION

We have confirmed the exactness of our semiclassical
analysis for symmetry classes CI, DIII, and AIII. By sim-
ply summing over the saddle points of the classical action
— recall that these differed by the length of the geodesic
looping around the compact fermion-fermion submani-
fold of the theory — and treating the fluctuations in the
Gaussian approximation, we have obtained the exact re-
sult for the partition function.
The underlying reason for the exactness of our calcula-

tions is that the path integral on the σ-model manifolds
considered here satisfies an infinite-dimensional general-
isation of the Duistermaat-Heckman theorem23,24. That
is, the integration manifold in Eq. 13, being related to the
space ΩG of based loops in G, is symplectic with Liou-
ville measure, and the action is the momentum mapping
on this manifold.
We have discussed all the symmetry classes where the

σ-model target space has a group-like structure, and thus
exhausted the situations in which the semiclassical ap-
proach is exact. Nevertheless, we hope that this approach
may inform future investigations of more taxing localiza-
tion problems. One very interesting extension that could
be tackled in a similar manner is the critical scaling of
the localization length near the band center in situations
where zero energy is described by classDIII or AIII. This
lies outside of the scope of methods like the DMPK equa-
tion.

APPENDIX: EMBEDDING OF g IN Q FOR
CLASS CI

Let us review the structure of the σ-model target space
for Class CI. The construction used in Ref. 13 is based
on ‘copying’ the symmetries of the Hamiltonian to sym-
metries of the auxiliary space of the Q-field. For Class
CI (particle-hole and time reversal symmetry), this is
achieved by demanding that the fields satisfy

ΨM = CΨ̄T
Mγ

−1, Ψ̄M = −γΨT
MC−1,

ΨM = Ψ̄T
Mτ

−1, Ψ̄M = τΨT. (A.1)

The subscript M is to remind us that in the formulation
of Ref. 13 the variables ΨM and Ψ̄M are (super)matrices
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mapping the auxiliary space to the physical Hilbert space
(where the Hamiltonian acts), and vice versa. In the
present case we work with the more traditional column
and row supervectors ΨV and Ψ̄V , since:

• In the localization problem the Q(r) field used
to decouple the term arising from potential dis-
order retains the Hilbert space structure of the
Hamiltonian (particle hole space and spatial index),
whereas in the random matrix problem that struc-
ture is lost on averaging and, more importantly,

• We use some of the additional structure (the cc
space) to enlarge our Hamiltonian (Eq. 7).

Transcribing the conditions (A.1) for supervectors gives

ΨV = γCΨ̄T
V , Ψ̄V = −ΨT

V C−1γ−1,

ΨV = τΨ̄T
V , Ψ̄V = ΨTτ−1, (A.2)

where we used the fact that γ and τ can be chosen to
be orthogonal matrices. Now in the localization problem
Q(r) is a 16×16 matrix (ph×cc×tr×bf - by ‘tr’ we mean
the space to accommodate time reversal symmetry), so
we need to check that the conditions (A.2) give rise to a
σ-model with the same 8× 8 space as in the random ma-
trix problem. This is straightforwardly verified following
Ref. 22 by observing that Q(r) ∼ Ψ ⊗ Ψ̄σ3 (we drop the
V subscript from now on), arising from a decoupling of
potential disorder, has the symmetry

Q = σ1γQ
Tγ−1σ1 ,

Q = σ3τQ
T τ−1σ3 . (A.3)

The saddle-point manifold is spanned by

Q =Wσ3Σ3W
−1, W = w ⊗ 11ph,

or

Q = σ3q, q = wΣ3w
−1.

Thus (A.3) implies that the symmetries of the 8× 8 field
q are

q = −γqTγ−1,

q = τqT τ−1, (A.4)

which are the same relations found in Ref. 13. To con-
struct an embedding of the 4 × 4 matrix group-valued
field g in q requires an explicit choice of γ and τ . We use

γ = Ebb ⊗ γb + Eff ⊗ γF,

τ = Ebb ⊗ τb + Eff ⊗ τf ,

γb = Σ1 ⊗ τ3, γf = iΣ2 ⊗ 11tr,

τb = 11cc ⊗ τ1, τf = Σ3 ⊗ iτ2,

where τi are the Pauli matrices in tr space, and Ebb and
Eff are projectors in the bose-bose and fermi-fermi sec-
tors. Note that the structure of the vector in cc space in

the bosonic sector is in fact then not given by Eq. 6, but
rather looks like

ΨB =
1√
2

(
ψB

Cτ3ψ̄T
B

)

cc

, Ψ̄B =
1√
2

(
ψ̄B,−ψT

Bτ3C−1
)
cc
.

Fortunately this doesn’t change the boundary conditions.
Now the correct embedding is obtained by finding a
transformation to diagonalize the matrix

η ≡ −iγτ−1 = Σ1 ⊗ τ2 ⊗ 11bf ,

η −→ U †ηU =



1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


⊗ 11bf ,

while simultaneously sending

Σ3 ⊗ 11tr ⊗ 11bf −→




0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0


⊗ 11bf .

Why? The point is that the set of w’s that preserve the
symmetries (A.4) takes the form

w −→ diag(g1, g2), g1, g2 ∈ OSp(2|2), (A.5)

in such a basis. The stability group of transformations
that send wΣ3w

−1 → Σ3 is then given by Eq. A.5 with
g1 = g2, so that the saddle-point manifold is parameter-
ized by

q = Udiag(g, g−1)U †Σ3, g ∈ OSp(2|2) .

An explicit form for U is

U =
1

2



−i −1 i 1
1 i −1 −i
−i 1 −i 1
1 −i 1 −i


⊗ 11bf .

Let us verify that this takes the maximal abelian sub-
group A to the q matrices of the form (9):

q = Udiag(a(φ, θ), a−1(φ, θ))U †Σ3

= diag

((
coshφ − sinhφ
sinhφ − coshφ

)
,

(
cos θ −i sin θ
i sin θ − cos θ

))

bf

⊗ 11tr.

Finally, the form of the action (13) in terms of g follows
from

STr [∇q]2 = 2STr
[
∇g∇g−1

]

= −2 STr
[
g−1∇g

]2
.
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