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We study noise-averaged observables for a system of exchange-coupled quantum spins (qubits),
each subject to a stochastic drive, by establishing mappings onto stochastic models in the strong-
noise limit. Averaging over noise yields Lindbladian equations of motion; when these are subjected to
a strong-noise perturbative treatment, classical master equations are found to emerge. The dynamics
of noise averages of operators displays diffusive behaviour or exponential relaxation, depending on
whether the drive conserves one of the spin components or not. In the latter case, the second
moment of operators – from which the average subsystem purity and out-of-time-order correlation
functions can be extracted – is described by the Fredrickson–Andersen model, originally introduced
as a model of cooperative relaxation near the glass transition. It is known that fluctuations of
a ballistically propagating front in the model are asymptotically Gaussian in one dimension. We
extend this by conjecturing, with strong numerical evidence, that in two dimensions the long-time
fluctuations are in the Kardar–Parisi–Zhang universality class, complementing a similar observation
in random unitary circuits.

I. INTRODUCTION

The success of microscopic models of matter hinges
upon the assumption that the resulting macroscopic de-
scription is relatively insensitive to the precise disposition
of the constituent particles. When applied to dynamical
phenomena – collective motion – this assumption seems
at odds with our usual understanding of generic dynam-
ical systems: that they display chaos and an exponential
sensitivity to initial conditions.

That we can derive the (deterministic) laws of hydro-
dynamics from the motion of gas particles and the as-
sumption of molecular chaos shows that this contradic-
tion is not as severe as it may at first seem. By focussing
on coarse-grained variables like the average local velocity,
the underlying chaotic motion fades into the background
and serves only to give rise to the pressure, viscosity and
other parameters of the effective description.

Nevertheless, if one believes that the butterfly effect is
more than a figure of speech, something must have been
lost along the way. By focusing on average quantities,
the growth of fluctuations from the microscopic to the
macroscopic is obscured. Long a part of statistical fluid
dynamics [1–3], these questions have only recently been
taken up in quantum field theory [4–11] and many-body
physics [12–18].

Traditionally, these fields have been concerned with av-
erages 〈Oj(t)〉, and response functions i〈[Oj(t),Ok(0)]〉 of
Heisenberg picture observables Oj(t). However, the act
of taking expectations in these quantities obscures the
possibility that in a given experiment we may observe a
very different response in observable Oj(t) to a pertur-
bation coupled to observable Oj(0). The variance of the
response function defines the out-of-time-order correla-
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tion function (OTOC)

Cjk(t) ≡ 1

2
〈[Oj(t),Ok(0)]

†
[Oj(t),Ok(0)]〉, (1)

that has been suggested as a diagnostic of many-body
quantum chaos [9–11, 19]. In the light of the above dis-
cussion, it is convenient to think of the OTOC in terms
of a supersystem consisting of two independent copies of
the system under consideration, and extract it from the
operator Oj(t) ⊗ Oj(t). The duplicate system is some-
times known as the thermofield double [20].

In recent years, OTOCs have been calculated in a vari-
ety of models, including the Sachdev–Ye–Kitaev (SYK)
model [21–23], the many-body localized phase of one-
dimensional spin models [24], weakly interacting fermions
[25], as well as chaotic single-particle systems [26].

In this work we will be concerned with the dynamics
of a system of coupled qubits (spin-1/2 objects), sub-
ject to classical noise described by a stochastic process
ηt [27]. We will be concerned with the first two operator
moments:

Oj ≡ E
η

[Oj ] , Oj ⊗Oj ≡ E
η

[Oj ⊗Oj ] . (2)

where Oj ∈ {Xj , Yj , Zj} is one of the Pauli matrices
describing qubit j. The motivations for this study are:

1. Conventional wisdom suggests that noise is anti-
thetical to quantum coherence. On the other hand,
the evolution of a quantum system in the presence
of classical noise is still unitary. We will see that
the expected loss of coherence is only true on aver-
age: the first and second moments have completely
different behaviour.

2. The limit of strong noise provides a controlled ap-
proximation in which we can obtain a tractable dy-
namics of the moments.
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FIG. 1. Growth of fronts in the one dimensional FA model
with a finite average ‘butterfly’ velocity vB.

3. In the era of real noisy intermediate-scale quantum
computers [28], there is need to understand the dy-
namics of quantum information in the presence of
strong noise.

The stochastic models we introduce may be regarded
as continuous-time analogues of the random unitary cir-
cuit model studied in many recent works [12–15, 29–36].
Though they share some phenomenology, our analysis
of the stochastic models is completely different, being
based on Lindblad equations. Expectations over stochas-
tic trajectories are taken at the first step, and the analysis
of the strong-noise limit is based on conventional many
body perturbation theory. This allows any (determinis-
tic) coupling between qubits to be taken into account –
though we focus on a Heisenberg coupling for simplicity
of presentation – and allows models with conservation of
one of the spin components to be handled on the same
footing.

As is the case for the random unitary circuit mod-
els, the dynamics of moments in certain cases can be
identified with the probability distribution of a classical
stochastic process [37–40] (see Table I). For the second
moment (or OTOC) in a model without any conserved
quantities, this is the Fredrickson–Andersen (FA) model,
originally introduced to describe dynamics at the glass
transition [41]. The FA model is an example of a kineti-
cally constrained model – see [42] for a recent review – and
has a rich phenomenology that we apply to the stochastic
spin model [43]. Specifically, we will see that with appro-
priate initial conditions the FA model describes ballisti-
cally growing fronts that are associated with the spread-
ing of the support of local operators in the Heisenberg
picture (see Fig.1). A characteristic speed for operator
spreading in many-body systems was first identified in
[7], and it has since become known as the ‘butterfly ve-
locity’ vB.

A. Outline

The outline of this work is as follows. Section II de-
scribes the models we use and their mapping to stochastic
models. In Section III we study the behaviour of fronts
in the FA model in one and two dimensions. In Sec-
tion IV we then apply the resulting phenomenology to
OTOCs and the behaviour of subsystem purity. Section
V contains the analysis of the strong-noise limit and the
derivation of effective master equations for the dynam-
ics of moments. Our conclusions are discussed in Section
VI. Technical details related to numerical simulations and
calculation of the effective Lindbladians may be found in
the appendices.

II. MODELS AND MAPPING

A. Models

We consider a system of N spin-1/2 objects (qubits),
and the closely related cases of (1) Heisenberg picture
evolution of observables O(t): ∂tO(t) = i[H(ηt),O(t)]
under a Hamiltonian H(ηt) depending on a stochastic
process ηt, and (2) the von Neumann equation for the
density matrix ρ(t): ∂tρ(t) = −i[H(ηt), ρ(t)].

We will be concerned with the first two operator mo-
ments:

O ≡ E
η

[O] , O ⊗O ≡ E
η

[O ⊗O] . (3)

The second (and higher) moments of an operator carry a
great deal more information about the dynamics than the
average alone. In particular, the second moment gives us:

1. The average purity

γ ≡ tr
[
ρ2
A

]
, (4)

where ρA is the reduced density matrix of a sub-
system A. Labelling bases of the subsystem A and
its complement Ac by the (multi-)indices A and Ac,
we have

γ =
∑

A1,A2,A
c
1,A

c
2

ρA1A
c
1,A2A

c
1
ρA2A

c
2,A1A

c
2
, (5)

which may be extracted from ρ⊗ ρ.

2. The average OTOC

C(j − k, t) ≡ 1

2
tr
[
ρ [Oj(t),Ok(0)]

†
[Oj(t),Ok(0)]

]
, (6)

where Oi,j are operators on qubit j and k. C(x, t)
may be extracted from Oj(t)⊗Oj(t) by contract-
ing indices with ρ and Ok(0).
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The generalization of our approach to higher moments
is straightforward, and we will return to this point in the
conclusion.

We will consider two models, one with conserved total
z-component of spin (C) and one without (NC). In both
cases, the Hamiltonian is the sum of deterministic and
stochastic terms

HC = H +

N∑
j=1

ηjtZj (C)

HNC = H +

N∑
j=1

ηjt · σj , (NC)

where σ = (X,Y, Z) are the usual Pauli matrices and ηt
is assumed to be delta-correlated noise,

E
η

[
ηjt η

k
t′

]
= gδ(t− t′)δj,k, (7)

while ηt = (ηxt , η
y
t , η

z
t ) contains three independent com-

ponents (assumed identical for ease of notation). H is a
time-independent Hamiltonian describing local coupling
between the spins. Our approach is not particularly sen-
sitive to the precise form of H, but for simplicity we will
begin with the Heisenberg chain

H = J

N∑
j=1

σj · σj+1. (8)

The generalization to other models, including those in
higher dimension, will be evident.

B. Model C at strong noise: Symmetric Exclusion
Process for O

Any operator on the Hilbert space may be written in
terms of the matrix elements between the Zj eigenstates
|z1 : zN 〉 with zj = ±1

〈z1 : zN |O|z′1 : z′N 〉 = Oz1:zN ,z′1:z′N
, (9)

where z1 : zN denotes the N -tuple (z1, · · · , zN ). A key
simplification occurs in the limit of strong noise (g large),
where the dynamics of the moments is restricted to cer-
tain subspaces: we will refer to them as the slow sub-

spaces. For example, in Model C the dynamics of O
is restricted to the 2N -dimensional diagonal subspace
zi = z′i (∀i), as these states are unaffected by the dephas-
ing noise. In Section V B we will show that, applied to the
density matrix ρ̄, this results in a closed evolution of the
probability distribution of a spin configuration z1 : zN ,
described by the symmetric exclusion process (SEP) [44]
(see Table I).

Model NC Model C

O Exponential decay Symmetric Exclusion Process

O ⊗O Fredrickson–Andersen ‘Octahedral’ model

TABLE I. The behaviour of the first and second operator
moments in Models NC and C in the strong-noise limit.

C. Model NC at strong noise:

Fredrickson–Andersen model for O ⊗O

A more interesting example is provided by the second
moment of Model NC. Because the noise in this model
randomizes all components of the spins, O ⊗O lives in
the tensor product of the space spanned by the rotation-
ally invariant single-site factors

|0j〉 ≡
1

2
11j ⊗ 11j

|1j〉 ≡
1

6
[Xj ⊗Xj + Yj ⊗ Yj + Zj ⊗ Zj ] . (10)

Any O ⊗O of this form has the expansion

O ⊗O =
∑

n1:nN∈{0,1}N
COn1:nN

|n1 : nN 〉 . (11)

Using the properties of the Pauli matrices it is easy to
show

tr
[
O2
]

=
∑

n1:nN∈{0,1}N
COn1:nN

. (12)

Since the trace of any operator product tr [O1(t)O2(t)] is
conserved under Heisenberg evolution, we may think of
COn1:nN

as a probability distribution (up to overall nor-
malization) and its evolution equation

∂tC
O = LCO (13)

as a (classical) master equation. In Refs. [37–40], a re-
lated discrete-time Markov chain was obtained for the
dynamics of operator moments due to randomly chosen
two-qubit unitary transformations. This Markov chain
was the basis of the calculations of OTOCs and purity in
the random unitary circuit model in Ref. [14].

What stochastic process is described by L? We will
see that it is the Fredrickson–Andersen (FA) model [41].
The FA model is defined on a lattice with sites that may
either be in state 1 or 0, with pairs of neighbouring sites
j and k undergoing the transitions

1j1k
Γ0−⇀↽−
Γ1

1j0k (14)

with rates Γ0,1. In the stationary state, sites are inde-
pendent with probability p1 = Γ1/(Γ1 + Γ0) to be 1. We
find Γ0 = Γ1/3 = 4J2/3g for model NC, i.e., 1s are three
times more common than 0s:

COn1:nN
|stationary =

1

4N

∏
j

3nj . (15)
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Two further comments: (1) The dynamics of CA and
Cρ are identical because the rates are quadratic in J . (2)
Individual trajectories of the FA model have no meaning,
as only the probability distribution CO appears in the

moment O ⊗O.

III. PHENOMENOLOGY OF FRONTS

A. Fronts in the FA model

The FA model was originally introduced to describe
dynamics at the glass transition, and is an example of a
kinetically constrained model, see [42] for a recent review.
The model has a spectral gap [45], indicating that equilib-
rium fluctuations are generically exponentially decaying
in time. Our main interest, however, is in the nonequi-
librium dynamics of the model, in particular in initial
conditions with only a few 1s, or regions devoid of 1s. In
this case a nonzero density of 1s grows into the empty
region with a finite front velocity, see Fig. 1.

The dynamics of a front in the FA model in one di-
mension was recently analyzed rigorously in Ref. [46] for
a variant of the model [47] in which the transition rate is
independent of the number of neighbours (see Ref.[48] for
the related case of the East model). There it was shown
that if the rightmost 1 starts at site 0, its displacement
Xt after time t is asymptotically given by the normal
distribution

Xt − vBt√
t

d−→
t→∞

N (0, s2), (16)

for some vB and s. This chimes with the arguments given
in Refs. [13–15] for the random unitary circuit model that
the probability distribution of Xt is that of a biased ran-
dom walk.

B. Fronts in two dimensions

The derivation of the FA model in the strong-noise
limit holds in any dimension. Ballistic motion of the front
in kinetically constrained models in higher dimensions is
discussed in Refs. [49–51]. It is natural to ask how the
front distribution in (16) generalizes to higher dimen-
sions. For the random unitary circuit model, Ref. [14]
proposed – and provided numerical evidence – that the
fluctuations of the front at long times are in the univer-
sality class of the Kardar–Parisi–Zhang (KPZ) equation
[52, 53]. In the 1 + 1-dimensional case, relevant for the
growth of a front in two dimensions, this equation has
the form

∂th = c0 + ν∂2
xh+

λ

2
(∂xh)2 + ζ(x, t). (17)

Here h(x, t) denotes the displacement of the front in the
direction of growth, as a function of transverse coordinate

FIG. 2. (Top) Upward growth of a front in the 2D FA model
into a region of 0s (black), starting from a row of 1s. (Bottom)
Growth of front variance with time. Dashed line is the power
law 0.13t2/3, consistent with the KPZ growth exponent β =
1/3.

x. The first term in (17) is a contribution to the ballistic
growth rate; the second describes diffusive motion of the
surface; the third captures a quadratic dependence of the
local growth rate on the tilt of the surface; the last is a
spatially uncorrelated white noise. The quadratic term
is a relevant perturbation below two spatial dimensions
that is responsible for novel scaling behaviour. For the
one-dimensional case considered here, fluctuations of the
surface have a dynamical critical exponent z – describing
the relative scaling of spatial and temporal fluctuations as
t ∼ xz – of z = 3/2, and growth exponent β – describing
the growth of interface fluctuations as h ∼ tβ – of β =
1/3.

We performed a numerical simulation to determine the
growth exponent for the FA model. The details are de-
scribed in Appendix A. For simplicity, we considered the
growth from a row of 1s, corresponding to flat initial
conditions, rather than from a single 1, which leads to
a rounded cluster. This option was not available to the
authors of Ref. [14], as the peculiarities of the circuit
model mean there is no roughening in a lattice direction.
In a simulation of 105 time steps, we observe nearly two
decades of scaling with the KPZ exponent β ∼ 1/3 (see
Fig. 2).

There is a wealth of exact results for the 1 + 1-
dimensional KPZ universality class: see Ref. [54] for a
recent review. In particular, the long-time scaling form
of the probability distributions of the height of a grow-
ing interface has been determined starting from various
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FIG. 3. Front probability distribution at t = 105 compared
with best fit Tracy-Widom density F ′1(s) (dashed) and Gaus-
sian (dash-dotted), where the width and shift of the distribu-
tions are fitting parameters.

initial conditions. More precisely, we write

h(x, t)
d−→

t→∞
ct+ αt1/3χ, (18)

where χ is a random variable with known distribution,
and c and α are constants. In the case of flat initial
conditions, χ is drawn from the Tracy-Widom distribu-
tion corresponding to the Gaussian Orthogonal Ensemble
(GOE) [55–57].

In Fig. 3 we show a comparison between the proba-
bility distribution of the front obtained at the end of
our numerical simulation, and the best fit Tracy-Widom
GOE and Gaussian distributions. The superiority of the
Tracy-Widom fit is evident, in particular in capturing
the skew of the distribution and the differing behaviour
of the left and right tails

log p(h) ∝

{
−|h|3 h→ −∞
−h3/2 h→ +∞.

(19)

IV. APPLIED PHENOMENOLOGY

A. OTOCs

The mapping to the FA model yields a simple expres-
sion for the OTOC (6) in Model NC with infinite tem-
perature initial density matrix ρ

Cjk(t) = 2−N
(

4

3

) ∑
n1:nN∈{0,1}N

nk=1

COj
n1:nN

(t), (20)

where the normalization follows from tr
[
Xj(t)

2
]

= 2N .
For a FA model starting with only site j in state 1, the
OTOC is then (4/3 times) the probability k has value 1
at time t.

FIG. 4. The averaged OTOC Cjk(t) is identified with the
probability for sites j and k to be in the same cluster. Here,
we have illustrated the Gaussian case – the functional form
being that of an error function, the cumulative distribution
function of a Gaussian – appropriate to one dimension.

Let us further make the reasonable assumption that,
after the front arrives at site k, the probability to be in
state 1 quickly approaches the equilibrium value of 3/4.
Then we identify

Cjk(t) = Pr [k in cluster seeded by j] , (21)

or in other words, the cumulative distribution function
of the front. The resulting behaviour of the OTOC is
illustrated in Fig. 4.

B. Purity decay

Consider a partition of the qubits into sets A and Ac,
of sizes |A| and |Ac|. The average purity of a region A is
expressed as (c.f. Ref. [29])

γ = tr
[
ρ2
A

]
= 2|A

c|
∑

nj=0,1 for j∈A

nj=0 for j∈Ac

Cρn1:nN
. (22)

The purity is (2|A
c| times) the probability that Ac contain

only 0s. Consider taking as an initial condition a random
pure product state, described by a density matrix

ρ =
1

2N

∏
j

[
11j + %j · σj

]
(23)

with unit vectors %j . Projected into the slow subspace of

Model NC, this gives Cn1:nN
(t = 0) = 2−N . Comparing

with (22), we see γ(t = 0) = 1, as required. Note that the
overall probability of Ac being empty is 1/2|A

c|, but this
exponentially small factor is cancelled by the prefactor
in (22).

If Ac is empty (i.e. contains only 0s) at time t, we
expect the fronts to be within A at earlier times. To see



6

FIG. 5. A ‘purity front’ velocity vPF < vB arises from the
joint probability of the propagating front deviating from the
velocity vB and an initial condition with X extra 0s.

how this picture leads to the decay of purity, consider the
growth of a single front in one dimension. The position
of the front is described by (16). To find the most likely
trajectory, the probability of finding a front at a distance
X inside A at time 0 must be combined with the proba-
bility of the front propagating to the boundary between
A and Ac at time t (see Fig.5). The joint probability of
these two events is then

P (Xt = 0, X0 = −X) ∼ 1

2|Ac|+X exp

(
− [X − vBt]

2

2s2t

)
.

(24)
For large t, it suffices to find the optimum value X∗ of
the initial front position, giving a ‘purity front’ velocity
vPF < vB

vPF ≡
X∗
t

= vB − s2 ln 2. (25)

The fronts move slower than the butterfly velocity vB.
Note that a similar argument appears in Ref. [29], though
with ad hoc assumptions about the statistics of front mo-
tion.

Substituting the optimal value X∗ in (24) gives the
exponential decay of the purity

γ(t) ∼ exp

(
−vBt ln 2 +

s2t

2
ln2 2

)
, (26)

which enables us to define the ‘purity velocity’ vP = vB−
1
2s

2 ln 2, such that γ(t) ∼ γ(0)e−vPt ln 2.
Applied to a region A of finite size, a simple generaliza-

tion of the above argument implies that two fronts move
towards each other at ±vPF. However, the two fronts
never touch (see Fig. 6), for when t > |A|/2vP, the most
likely initial configuration is completely empty, and the
purity saturates. Thus we have

γ(t) ∼

{
e−2vPt ln 2 t < |A|/2vP

1
2|A| t > |A|/2vP

(27)

FIG. 6. (Top) Schematic representation of the propagation
of two fronts in 1+1 spacetime. White represents a region of
0s and black dots an active region of 1s and 0s. (Bottom)
− log γ̄(t) for the case when γ̄(t) is computed for a finite sub-
system. The red lines at fixed spatial positions in the upper
right figure demarcate a finite subsystem of size |A|. Be-
fore saturation, − ln ¯γ(t) grows at a rate (shown) controlled
by the purity velocity. By Jensen’s inequality, this rate is
a lower bound on the growth of the averaged second Rényi
entanglement entropy.

These results are valid for large t and |A|, where the op-
timum dominates the probability. The fact that purity
decays on a time scale linear in the subsystem size is
consistent with our local Hamiltonian, and is to be con-
trasted with the fast scrambling (i.e. in a time logarith-
mic in the size) possible in systems with highly nonlocal
coupling [5, 6].

If |Ac| < |A|, the situation is slightly different. Once
t > |Ac|/2vE, the most probable way for an empty Ac

to arise is from the stationary distribution (15), assum-
ing this distribution is approached exponentially quickly
from the initial state, giving

γ(t > |A|/2vE) =
1

2|Ac| . (28)

The purity dynamics we have found (see Fig. 6) are
consistent with the expectation, largely based on exact
diagonalization studies [58] and toy models [12], that
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ballistic entanglement growth is a universal feature of
quantum chaotic many-body systems. Moreover, our
continuous-time results supplement the analytic discrete-
time calculations in random unitary circuits [14], which
have also confirmed this phenomenology (with a purity
velocity satisfying vP < vB), via a mapping of the average
purity onto the partition function of a directed random
walk. The approach, which has been extended to ob-
tain the higher Rényi entropies from a correspondence
with a hierarchy of classical statistical mechanics models
[59], has motivated the suggestion of a “minimal mem-
brane” picture of entanglement spreading in generic non-
integrable quantum systems [32].

V. DYNAMICS IN THE STRONG-NOISE LIMIT

In this section we derive the Lindblad equations for
the first and second density matrix moments, and then
show how these may be analyzed in the strong-noise limit.
The closely related equations for operator moments are
readily obtained by taking ρ→ O and dHt → −dHt.

A. First moment

If we formally express the white noise ηt as the Itô
differential of a Brownian motion Bjt ,∫ t′

ηt dt =

∫ t′

dBt, (29)

then one finds that the generator dHC
t of infinitesimal

stochastic unitary evolution in model C is given by [27]

dHC
t = Hdt+

√
g
∑
j

Zj dB
j
t . (30)

A straightforward exercise in Itô calculus yields the equa-
tion of motion of the density matrix [60]

dρt = e−idH
C
t ρte

idHC
t − ρt = −i [H, ρ] dt

− g

2

∑
j

[Zj , [Zj , ρ]] dt− i√g
∑
j

[Zj , ρΨ] dBjt ,
(31)

the expectation of which is thus of Lindblad form [61]

∂tρ̄ =

LH(ρ̄)︷ ︸︸ ︷
−i [H, ρ̄]−

D(ρ̄)︷ ︸︸ ︷
g

2

∑
j

[Zj , [Zj , ρ̄]] . (32)

The corresponding equation for model NC, obtained by
an analogous procedure, is

∂tρ̄ = −i[H, ρ̄]− g

2

∑
j

3∑
a=1

[σaj , [σ
a
j , ρ̄]]. (33)

We note that this calculation can alternatively be done,
albeit less concisely, by interpreting the stochastic pro-
cess ηt in the Stratonovich sense (see e.g. Appendix A.4
of [62]).

B. Strong-noise limit

In the strong-noise limit (g → ∞), the state is pro-
jected onto the kernel of the dissipator D – which we term
the slow subspace and denote by S – which is spanned
by the states for which [Zj , ρ] vanishes, i.e., the diagonal
components of the density matrix in the Z-basis. The
dynamics on S can be analyzed perturbatively in g−1 (as
done in [62]); the effective Liouvillian to leading order
takes the form Leff = −PSLHD−1LHPS , where PS is
the projector onto S and D−1 is the inverse of the re-
striction of D to its coimage. Explicit evaluation leads
to

Leffρ̄ = − J2

16g

∑
j

[σ+
j σ
−
j+1 + h.c., [σ+

j σ
−
j+1 + h.c.,PS ρ̄]].

(34)
If we now find a matrix representation for Leff, which we
shall denote L, by regarding ρ̄ ∈ S as an element ~ρ of
a vector space over R (sometimes referred to as ‘super-
space’) with basis {|1〉 〈1| , |0〉 〈0|}⊗N , we obtain a master
equation

∂t~ρ = L~ρ, (35)

with L = J2

g

∑
i (~σi · ~σi+1 − 11), such that the correspond-

ing effective Hamiltonian −L (if we think of the master
equation as an imaginary-time Schrödinger equation) co-
incides with that of a Heisenberg ferromagnet. Up to
a constant, L is thus seen to be the generator of the
SEP [63]. In the one-dimensional case, we have an al-
ternative route to this result as the model is found to
be integrable by means of a mapping to an imaginary-U
Hubbard model [64]. In the strong-noise limit, the Bethe
ansatz equations reduce to those of the spin-1/2 ferro-
magnetic Heisenberg model, from which the quadrati-
cally dispersing Liouvillian spectrum and consequent dif-
fusive relaxation follow (as was established earlier in [65]
by analytic evaluation of the single-particle Green’s func-
tion).

C. Second moment

Noise averaging the stochastic differential equation for
the second moment of ρ in model NC leads to the Lind-
blad equation for the replicated system

∂tρ⊗ ρ = −i[H, ρ⊗ ρ]− g

2

∑
j,a

[Σaj , [Σ
a
j , ρ⊗ ρ]] (36)

where we have introduced the operators H = H ⊗ 11 +
11⊗H and Σaj = σaj ⊗ 11 + 11⊗ σaj .

The kernel of the dissipator is constructed from the
states locally invariant under rotation. Thus we have
S = span

(
{11⊗ 11,

∑
a σ

a ⊗ σa}⊗N
)
.

The effective Liouvillian to leading order (see Ap-
pendix B for the derivation for model C; the model NC
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result is obtained similarly) acts on elements of S accord-
ing to

Leff(· · · ) = − 1

4g
PS [H, [H, · · · ] (37)

A matrix representation for Leff can again be found (see
Appendix C for details) if we take {|0〉 , |1〉}⊗N (using the
states as defined in (10)) as a vector space basis. This
matrix is given by L =

∑
j Lj,j+1, where

Lj,j+1 =
4J2

g

0 0 0 0
0 −1 0 1/3
0 0 −1 1/3
0 1 1 −2/3

 , (38)

can be identified as the transition rate matrix of a
continuous-time Markov process: the one-spin facilitated
FA model with rates given in Eq. (14).

A similar analysis (see Appendix B) for the second
moment of model C does not appear to lead to a mapping
to a classical stochastic model. Nonetheless, we shall
make some observations about the effective dynamics. In
the strong-noise limit, the dynamics is projected onto the
6N -dimensional slow subspace S spanned by {|z1〉 〈z1| ⊗
|z2〉 〈z2| , |z3〉 〈−z3| ⊗ |−z3〉 〈z3| : zi ∈ {−1, 1}}⊗N . It is
helpful to partition the single-site factors of S into three
types of pairs of states

1. (11, 11) (−1− 1,−1− 1)

2. (11,−1− 1) (−1− 1, 11)

3. (1− 1,−11) (−11, 1− 1), (39)

where we have represented the state |z1〉 〈z2| ⊗ |z3〉 〈z4|
by the tuple (z1z2, z3z4). It is helpful to visualise each
pair of states as occupying antipodal vertices of an oc-
tahedron. If we consider the effective Liouvillian, which
differs from that of model C only by a multiplicative con-
stant and the fact that the projector is into a different
slow subspace, we identify three classes of matrix element
(with the possible values given in parenthesis):

1. Pair changing (±2): A pair of a given type, with
each element of the pair occupying adjacent sites,
may be transformed into a pair of another type.

2. Exchange (±2): The states of adjacent sites may
be exchanged, if the two states belong to different
pairs.

3. Diagonal (2 or 4): No change, but a constant factor
equal to the Hamming distance between the two
states is acquired.

The differing signs can be seen to ensure that the both
the trace (only pairs 1 and 2 contribute) and purity (only
pairs 1 and 3 contribute) of the full density matrix are
preserved under evolution.

FIG. 7. An example of exchange (left) and pair changing
(right) terms, as visualised on a square cross section of the
‘octahedron’ of single-site states that span the slow subspace
of model C. The filled and empty circles represent the states
on adjacent sites.

VI. CONCLUSIONS

We have provided a precise account of operator spread-
ing for a system of interacting qubits undergoing con-
tinuous time evolution, with each qubit independently
coupled to a stochastic drive. By averaging over noise,
Lindblad equations for the first and second operator mo-
ments were derived and studied perturbatively in the
strong-noise limit; the central result being the identifi-
cation of a mapping to the Fredrickson–Andersen model
for the second moment dynamics in the case of noise that
does not conserve a spin component. Considering the
phenomenology of front growth in this model then en-
abled us to determine the implications for the behaviour
of OTOCs and the decay of subsystem purity, which were
found to be in line with the results established in random
unitary circuit models. Although the mapping holds in
arbitrary dimension, we restricted our attention to the
one- and two-dimensional case: in one spatial dimension,
we exploited the known exact Gaussian asymptotics of
the front, whilst in two dimensions we conjectured, with
numerical support, that front fluctuations exhibit (1+1)-
dimensional KPZ universality, thus giving us access to
exact results for the front shape in terms of Tracy-Widom
distributions.

Our approach generalises naturally to higher operator
moments [66]. We expect that the identification of the
slow subspaces and projection of the dynamics into those
spaces will be more involved but tractable, and will allow
the study of higher entanglement entropies and the full
distribution of operator statistics.
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gramme ‘Quantum Paths’ at the Erwin Schrödinger In-
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Appendix A: Details of numerical simulation

For convenience we study the version of the FA model
in which the probability of a site to flip its state depends
only on having neighbours, not their number [47].

We use multispin coding [67–69], whereby 64 configu-
rations of the model are represented as an array of (un-
signed) 64-bit integers, and updated by bitwise opera-
tions. This allows 64 trajectories to be simulated simul-
taneously on a single core. Our simulation consisted of a
single run on each of 16 virtual cores, corresponding to
1024 trajectories.

We initialized a L × H lattice with L 1s in the first
row, enforcing periodic boundary conditions along the
rows. The front is defined as the height of the highest 1 in
each column. As the front grows in the vertical direction,
it must be periodically reset so that it remains roughly
centered. This is achieved by calculating the mean height
of the front across the 64 configurations every 10 updates
and moving the configuration downward by 10 sites when
the mean exceeds H/2 + 5.

For the largest simulations we took L = 104, H = 200,
and T = 105 timesteps. A height of H = 100 resulted in
a breakdown of scaling behaviour at the longest times,
presumably a consequence of the fluctuations of the in-
terface being bounded by the finite height window.

The simulation code and data analysis are written
in Julia and are available as a Jupyter notebook, to-
gether with the simulation data, at https://github.
com/AustenLamacraft/FA-front.

Appendix B: Second moment dynamics of Model C
in the strong-noise limit

Application of Itô’s lemma enables us to write down
the stochastic differential equation for the second mo-
ment of the density matrix in model C

d(ρ⊗ ρ) = −i[H, ρ⊗ ρ] dt− i√g
∑
j

[Σzj , ρ⊗ ρ] dBjt

− g

2

∑
j

[Σzj , [Σ
z
j , ρ⊗ ρ]] dt,

(B1)

which upon averaging leaves us with

∂tρ⊗ ρ = −i[H, ρ⊗ ρ]− g

2

∑
j

[Σzj , [Σ
z
j , ρ⊗ ρ]] (B2)

where we have adopted analogous notation to that of
(36), i.e., Σzj = Zj⊗11+11⊗Zj . In the strong-noise limit,

the dynamics is projected onto the 6N slow subspace S
spanned by {|z1〉 〈z1| ⊗ |z2〉 〈z2| , |z3〉 〈−z3| ⊗ |−z3〉 〈z3| :
zi ∈ {−1, 1}}⊗N . The first nonvanishing term in per-
turbation theory for the generator of the strong-noise
dynamics of the second moment of the density matrix,
which we also refer to as an effective Liouvillian, is given
by Leff = −PSLHD−1LHPS . If we consider the action
of DLH on a single site, we have

DLH (|z1〉 〈z1′ | ⊗ |z2〉 〈z2′ |) =
ig

2

(
[H, |z1〉 〈z1′ |]⊗ |z2〉 〈z2′ |

×

(
(zj2 − z

j
2′)

2 + 4

(
1−

(zj1 − z
j
1′)2

4

)
− 4zj1

(
1−

(zj1 − z
j
1′)2

4

)
(zj2 − z

j
2′)

)
+ |z1〉 〈z1′ | ⊗ [H, |z2〉 〈z2′ |]

×

(
(zj1 − z

j
1′)

2 + 4

(
1−

(zj2 − z
j
2′)2

4

)
− 4zj2

(
1−

(zj2 − z
j
2′)2

4

)
(zj1 − z

j
1′)

))
,

(B3)

from which it follows that LHPS
(
ρ⊗ ρ

)
is an eigenstate

of D with eigenvalue 4. The effective Liouvillian can thus
be written

Leff = − 1

2g
PS ad2

H, (B4)

where we have used the adjoint action notation
adH(· · · ) := [H, · · · ].

Appendix C: Effective Liouvillian for the second
moment of model NC

We begin by evaluating the double commutators that
arise when Leff acts on the basis states of S. If we write
the Heisenberg Hamiltonian as

∑
j,k hjk for hjk = σaj σ

a
k

(n.b. we shall assume the summation convention only for
the upper (i.e. spin) indices), we have

[hjk, [hjk, σ
a
k ]] = 8

(
σak − σaj

)
(C1)[

hjk,
[
hjk, σ

a
j σ

b
k

]]
= 8

(
σaj σ

b
k − σbjσak

)
. (C2)

https://github.com/AustenLamacraft/FA-front
https://github.com/AustenLamacraft/FA-front
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Since we are considering a Hamiltonian with only a two-
body interaction, we only need to consider four possible
states: each local factor for the two sites that hjk couples
is either |0〉 or |1〉 (as defined in (10)). The |0j0k〉 state is
trivially seen to lie in the kernel of Leff, so that we only
need to compute

Ljk
(
σaj σ

b
k ⊗ σaj σbk

)
= PS

[
− 8

(
σaj σ

b
k − σbjσak

)
⊗ σaj σbk

− 8σaj σ
b
k ⊗

(
σaj σ

b
k − σbjσak

)
+ 16

(
σαk − σαj

)
⊗
(
σαk − σαj

) ]
.

(C3)

and

Ljk (11jσ
a
k ⊗ 11jσ

a
k) = PS

[
− 8

(
11jσ

a
k − σaj 11k

)
⊗ 11jσ

a
k−

811jσ
a
k ⊗

(
11jσ

a
k − σaj 11k

)
+ 8

(
σbjσ

c
k ⊗ σbjσck − σbjσck ⊗ σcjσbk

) ]
,

(C4)

with the corresponding result for |1j0k〉 following by in-
terchanging j and k in the last equality. It remains only

to perform the projection back into the slow subspace:
terms of the form σaj 11k ⊗ 11jσ

a
k are projected out, but

σbjσ
a
k ⊗ σaj σbk terms have a nonzero component in S that

we must compute. This is most clearly seen by decom-
posing the dyadic Cartesian tensor operator σaj ⊗σbj into
irreducible representations of SO(3) as

σaj ⊗ σbj =
1

3

(
σαj ⊗ σαj

)
δab +

1

2

(
σaj ⊗ σbj − σbj ⊗ σaj

)
+

1

2

(
σaj ⊗ σbj + σbj ⊗ σaj −

2

3
σαj ⊗ σαj δab

)
, (C5)

from which it follows that

PS
[
σbjσ

a
k ⊗ σaj σbk

]
=

1

3
σaj σ

b
k ⊗ σaj σbk. (C6)

Combining these results and exploiting orthogonality of
the {|0〉 , |1〉} states with respect to the Hilbert-Schmidt
inner product yields the matrix given in (38).
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