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Persistent currents in Bose condensates with a scalar order parameter are stabilized by the topol-
ogy of the order parameter manifold. In condensates with multicomponent order parameters it is
topologically possible for supercurrents to ‘unwind’ without leaving the manifold. We study the
energetics of this process in the case of ferromagnetic condensates using a long wavelength energy
functional that includes both the superfluid and spin stiffnesses. Exploiting analogies to an elastic
rod and rigid body motion, we show that the current carrying state in a 1D ring geometry tran-
sitions between a spin helix in the energy minima and a soliton-like configuration at the maxima.
The relevance to recent experiments in ultracold atoms is briefly discussed.

I. INTRODUCTION

Long-lived metastable currents – often called persistent
currents – are a hallmark of superfluidity [1]. In Bose
condensates, the existence of persistent currents is usu-
ally connected with the topology of the condensate wave-
function Ψ(r). Suppose that Ψ(r) varies only around the
circumference of an annular container. If the vanishing of
the superfluid density ρ(r) = |Ψ(r)|2 is energetically un-
favorable – due to repulsive interparticle interactions or
Fermi pressure in the case of a paired fermion superfluid
– only the phase of Ψ(r) may vary, winding an integer
number of times around the circumference. The super-
fluid velocity is related to the gradient of the phase χ(r)
by

v = ∇χ, (1)

where the mass and ~ are set to unity. Winding of the
phase is thus associated with current carrying states,
metastable due to the energetic cost of vanishing den-
sity.

In this paper we are concerned with Bose condensates
with internal degrees of freedom [2], where the persistent
currents can have a very different character. A particle
may be in a superposition of different internal states,
which we will generically refer to as ‘spin’ states. To
illustrate the physics involved, consider the simplest case
of two internal states (‘spin-1/2’). The order parameter
is now a two component spinor. Consider the family of
order parameter configurations [1]

Ψ(x) =

(
ψ↑(x)
ψ↓(x)

)
=

(
cos(θ/2)e2πix/L

sin(θ/2)

)
, 0 ≤ θ ≤ π (2)

where L is the circumference of the annulus. As θ in-
creases from 0 to π, we interpolate smoothly from a con-
figuration where the phase winds by 2π to one with no
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winding. The density ρ(x) = Ψ†Ψ is constant, so there
is no energy penalty associated with compressing the
condensate. Furthermore, the kinetic energy descreases
monotonically.

This does not imply, however, that there are no
metastable states in spinor condensates. If the ‘mag-
netization’

M ≡
∫ L

0

dx
[
ψ†↑ψ↑ − ψ

†
↓ψ↓

]
(3)

is conserved, states of different θ in the above example are
not dynamically accessible, as M ∝ cos θ. Then it is clear
that the fully polarized condensate behaves as its scalar
counterpart. Only a partially polarized condensate can
take advantage of the spin degrees of freedom to ‘unwind’
the superfluid flow without changing the density. Our
goal is to analyze the energy barrier present in this case.

In a recent experiment [3], persistent currents were ob-
served in a two-component Bose condensate confined to
a toroidal trap. We will discuss this experiment in light
of our results in Section V. Refs. [4, 5] provide earlier
treatments complimentary to ours.

A. Energy Functional

We will follow the approach introduced in Ref. 6, in
which the mean field (or Gross-Pitaevskii) approxima-
tion is specialized to the ‘incompressible limit’ where the
interaction energy is much larger than the kinetic energy
of the superfluid flow. This is equivalent to the conden-
sate wavefunction varying on a scale far in excess of the
healing length.

We briefly recapitulate the key ideas for spin-1/2. The
interaction energy is minimized by configurations of con-
stant density ρ. The variation of the energy between
configurations of constant density arises solely from the
kinetic energy. If the transverse dimensions of a ring
of circumference L are much smaller than the healing
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length, this is

E =
1

2

∫ L

0

dx
dΨ†

dx

dΨ

dx
. (4)

If we parameterize the spinor as

Ψ =
√
ρeiχ

(
cos(θ/2)

sin(θ/2)eiφ

)
, (5)

then the angles θ and φ give the polar coordinates of a
unit vector n giving the magnetization axis

ρn = Ψ†σΨ = ρ(sin θ cosφ, sin θ sinφ, cos θ), (6)

while the superfluid velocity is

v = − i

2ρ

[
Ψ†

dΨ

dx
− dΨ†

dx
Ψ

]
(7)

= χ′ + sφ′(1− cos θ) (8)

where s = 1/2. The energy can then be written as a
functional of n(x) and χ(x)

E [n, χ] = ρ

∫ L

0

dx

[
v2

2
+
s

4

(
dn

dx

)2
]

(9)

Since the angles χ, θ, and φ are all periodic on the ring,
the supercurrent has circulation∫ L

0

v dx = 2πp+ sΩ[n], (10)

where n is an integer and Ω[n] is the solid angle enclosed
by the path traced out by n(x) on the unit sphere

Ω[n] =

∮
(1− cos θ)dφ (11)

The generalization to ferromagnetic states of arbitrary
spin s was considered in Ref. 6. Allowing for rotationally
invariant interactions between spin-s particles, the mean
field phase diagram always includes a region where the
condensate wavefunction is a spin coherent state.

The form (8) of the superfluid velocity represents one
parameterization of the coherent states |n〉: in general
the velocity may be written in terms of the Berry poten-
tial A(n) ≡ −i 〈n| (d |n〉 /dx) as

v =
dχ

dx
+A(n) (12)

The circulation is however gauge invariant and given by
(10).

The analysis of the functional (9) is the goal of this
paper. As we have discussed, we are interested in min-
imizing the energy at fixed magentization M . This can
be implemented with a Lagrange multiplier, giving the
functional

Eh[n, χ] = E [n, χ]−
∫ L

0

h · n dx. (13)

B. Conserved supercurrent

A simple first observation is that χ is a cyclic coordi-
nate in the language of Lagrangian mechanics: only its
derivative appears in (9). As a result the Euler–Lagrange
equation for χ implies

v(x) =
dχ

dx
+A(n) = const., (14)

so that stationary points of the energy have spatially con-
stant superflow. The circulation is thus simply propor-
tional to v and (10) gives

v =
2πp

L
+
sΩ[n]

L
. (15)

Thus we may extremize only the second term in (9) sub-
ject to fixed Ω[n].

The stationary configurations of the energy with fixed
v, or total momentum P = ρvL, move at constant ve-
locity. To see this, consider the action describing the
dynamics of the condensate

S =

∫
dt

[∫ L

0

iΨ†∂tΨ dx− E [n, χ]

]
. (16)

For a configuration Ψ(x, t) = Ψ(x − ut) moving at con-
stant velocity u, the action is S = −

∫
Eudt, where

Eu = E − uP. (17)

Thus we can interpret u as a Lagrange multiplier fixing
P , so that

u =
∂E
∂P

, (18)

as one might have expected.
On account of the conserved supercurrent, the disper-

sion relation we seek has the general form

Ep(Ω,M) =
ρ

2L
(2πp+ sΩ)2 + Eσ(Ω,M) (19)

where

Eσ(Ω,M) = min
n(x)

Ω[n]=Ω
M [n]=M

ρs

4

∫ L

0

(
dn

dx

)2

dx. (20)

As shown in Ref. 7, the function Eσ(Ω,M) gives the
dispersion relation of constant velocity solutions of the
Landau–Lifshitz equation

∂tn =
ρs

2
n× ∂2

xn. (21)

The extra term in (19) represents the contribution of the
superfluid velocity, absent in a normal magnet. Since
Eσ(Ω,M) has period 4π in Ω, there are 2s separate
‘branches’ of the dispersion indexed by p = 0, . . . , 2s− 1,
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FIG. 1. Two branches of the dispersion for s = 1, with the
solid and dashed lines corresponding to p = 0, 1 in (19). We
use the soliton dispersion (74) at ∆ = 0.1 for simplicity, see
Section III D.

see Figure 1. These branches have the following topolog-
ical meaning. For s = 1/2 constant density states satisfy

|ψ↑|2 + |ψ↓|2 = 1 (22)

and correspond to points on the three dimensional sphere
S3. On S3 there are no noncontractible loops, so that any
periodic Ψ(x) may be smoothly deformed to any other.

For s > 1/2, we can parameterize the coherent state
in terms of the s = 1/2 spinor that has the same mag-
netization axis n, but we have to be careful with the
overall phase. When rotated through an angle θ about
the n axis, the coherent state acquires a phase factor
eiθs. Thus we have to identify spin-1/2 states that differ
by eiπ/s.

ψ↑,↓ ∼ eiπ/sψ↑,↓ (23)

This quotient of S3 is known as the Lens space L(p; 1)
and has fundamental group Z/(2s) [8][9]. The 2s ele-
ments correspond to the 2s branches of the dispersion.
The same physics was discussed in Ref. 10 in the context
of the Heisenberg ferromagnetic chain.

C. Outline

To close this introductory section, we outline the re-
mainder of the paper. In the next section we introduce
two precise mathematical analogies that give different in-
terpretations of the functional (9), and provide a useful
basis for further analysis. In Section III we find the ana-
lytic form of the mininum energy solutions. The param-
eters of the solutions are fixed by the periodic boundary
conditions. In Section IV we give an alternative numeri-
cal formulation that is often more convenient in practice
than the analytical solution. Finally, in Section V we

discuss the relation of these results to recent experiments
and other theoretical works.

II. TWO ANALOGIES

A. Elastic Analogy

We will now show that the energy functional (9) also
describes the elastic energy of a flexible rod. It is useful to
first write the functional in a different way, motivated by
the spin-1 case rather than the spin-1/2 context in which
we introduced it. To this end, write the three component
order parameter of a spin-1 condensate in term of two real
vectors as

Ψ =

√
ρ

2
(a + ib) . (24)

In a cartesian basis, the spin-1 operators have the explicit
form (Sj)kl = −iεjkl, so that

Ψ†SΨ = ρa× b. (25)

As a result, a fully polarized ferromagnetic condensate
is described by orthogonal unit vectors a, b, with mag-
netization in the direction n = a × b. The orthonormal
triad {a,b,n} defines an element of the group of proper
rotations SO(3) [11, 12]. The two branches of the disper-
sion in this case correspond to the well known fact that
π1(SO(3)) = Z/2

In this language, the superfluid velocity has an inter-
esting interpretation:

v = − i

2ρ

[
Ψ†

dΨ

dx
− dΨ†

dx
Ψ

]
(26)

=
1

2

[
a · db

dx
− da

dx
· b
]
. (27)

We see that v describes the twisting around the n axis.
By using the relations

n′ = a′ × b + a× b′ (28)

a′ · b + a · b′ = 0, (29)

we can obtain

E =
1

2

∫ L

0

dx
dΨ†

dx

dΨ

dx
(30)

=
ρ

4

∫ L

0

[
a′2 + b′2

]
(31)

= ρ

∫ L

0

dx

[
v2

2
+

1

4

(
dn

dx

)2
]
, (32)

which coincides with (9) for s = 1.
Now we will see how the same formulation in terms of

an orthonormal triad describes an elastic rod, by which
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FIG. 2. An elastic rod described by a space curve γ(x) as a
function of arc length x, with unit tangent vector n ≡ γ′(x).
For this curve, the corresponding n(x) is shown in Figure 6.

we mean an elastic body with cross section small com-
pared to its length. The rod’s configuration is described
by a curve γ(x) giving the position of a point on the
centre line as a function of arc length x (see Figure 2).
n ≡ γ′(x) is the unit tangent vector to the curve. One
contribution to the energy of a configuration depends on
the curvature of the rod, which is

κ =

∣∣∣∣dndx
∣∣∣∣ . (33)

The other contribution depends on the twisting of the
rod. To quantify this, we need to set up an orthonormal
triad {n(x),a(x),b(x)} at each point on the curve. As
we move along the curve, this triad undergoes a rotation,
which can be described by an ‘angular velocity’ ω (having
units of inverse length)

n′ = ω × n (34)

a′ = ω × a (35)

b′ = ω × b. (36)

If we write

ω = ωnn + ωaa + ωbb, (37)

then the simplest approximation to the elastic energy of
the rod is

Eel =
1

2

∫
dx
[
αω2

a + βω2
b + γω2

n

]
. (38)

The first two terms represent the energy of bending, and
the third the energy of twisting. For a symmetric cross

section α = β, and the definition (36) can be used to
write (

dn

dx

)2

= ω2
a + ω2

b (39)

a′ · b = −a · b′ = ωn (40)

The elastic energy (38) then coincides with the energy
functional (9) of the ferromagnetic condensate with the
identifications α = ρs/2, γ = ρs2. The bending stiffness
α corresponds to the spin stiffness, while the torsional
stiffness γ corresponds to the superfluid stiffness.

There is a complete correspondence between the elas-
tic and superfluid problems. For example, the analog of
constant supercurrent is constant twist rate ωn = const.,
which arises from the vanishing torque along the axis on
any element of the rod.

The end-to-end displacement of the rod

γ(L)− γ(0) =

∫
n(x) dx (41)

corresponds to the total magnetization, while a force ap-
plied to the endpoints corresponds to a magnetic field,
appearing in the energy Eh in (13). Thus a straight rod
with |γ(L) − γ(0)| = L corresponds to a fully polarized
condensate. Evidently such a rod may be twisted indef-
initely about its axis (until the approximations of linear
elasticity break down). This is the case of a fully polar-
ized superfluid: an arbitrary number of phase twists are
allowed in the constant density approximation.

If the ends of the rod are allowed to approach each
other the rod bends, increasing the bending energy, but
will tend to untwist, reducing the torsional energy. This
corresponds to a partially polarized condensate, and is
the mechanism by which the supercurrent is reduced.
Note that a real elastic rod can touch itself when buckled,
a feature that does not appear in the superfluid problem.

To quantify the untwisting associated with bending of
the rod imagine fixing a twist ψ along a straight rod.
If the ends of the rod are clamped in the same relative
orientation so that the tangents match n(0) = n(L), then
the relation (15) takes the form (for s = 1)∫

ωn dx = ψ − Ω[n]. (42)

(note v → −ωn) As the solid angle enclosed by n(x)
increases, the integrated twist decreases.

We summarize the superfluid-elastic analogy in Table
I. The theory of elastic rods is extensive: we refer to
the recent book [13] for further details and references.
The field begins with Kirchhoff’s paper of 1859, which
introduced the second analogy we will use [14].
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Ferromagnetic Condensate Elastic Rod Lagrange Top

n γ′(x), tangent to rod Symmetry axis of top (3 axis)

|n′| κ, curvature
√
ω2

1 + ω2
2

v, supercurrent ωn, twist rate ω3

Superfluid stiffness (coefficient of v2 in energy) Torsional stiffness I3, moment of inertial about 3 axis

Spin stiffness (coefficient of n′2 in energy) Bending stiffness I1 = I2

M, magnetization γ(L)− γ(0), end-to-end displacement N/A

h, magnetic field Force applied at endpoints Gravity acting on 3 axis

TABLE I. The elastic and kinematic analogies

B. Kinematic Analogy

Kirchhoff discovered a precise mapping between the
equilibrium configurations of an elastic rod and the mo-
tion of a rigid body. With the groundwork of the previous
section, it is not too hard to understand where this kine-
matic analogy comes from. Arc length along the rod is
interpreted as time, and we have already seen that the
change of the orthonormal frame describing the configu-
ration of the rod defines an angular velocity. The elastic
energy (38) is now interpreted as an action given by the
time integral of the rigid body kinetic energy. The stiff-
nesses α, β and γ are interpreted as moments of inertia
I1,2,3. The case α = β of interest to us corresponds to
the symmetric top with symmetry axis n. The kinematic
analogy is summarized in Table I.

A Lagrangian that includes a linear potential acting on
the symmetry axis corresponds to the energy Eh of (13).
Recalling that the magnetic field h plays the role of a
Lagrange multiplier in our formulation, we see that the
problem of ferromagnetic superfluids with fixed magne-
tization is in correspondence with the heavy symmetric
top, often called the Lagrange top. This system is treated
in many textbooks, see e.g. Ref. 15. In terms of the usual
Euler angles, and taking h to lie in the z-direction, the
energy Eh is

Eh =

∫ L

0

dx
[α

2

(
θ′2 + φ′2 sin2 θ

)
+
γ

2
(ψ′ + φ′ cos θ)

2

−h cos θ] (43)

The Lagrange top is a completely integrable system on
account of its three conserved quantities. The first two
are the angular momentum about the symmetry axis,
corresponding to the conserved supercurrent, and the an-
gular momentum in the direction of the field. These are
associated with the cyclic coordinates ψ and φ, and take
the form

pψ = γ (ψ′ + φ′ cos θ) (44)

pφ = αφ′ sin2 θ + cos θ pψ. (45)

pφ corresponds to the z-component of spin current. The
third conservation law is associated with translation – in

the dynamical case this is the energy though here it has
units of energy density

ε ≡ α

2

(
θ′2 + φ′2 sin2 θ

)
+ h cos θ. (46)

Using the first two conservation laws ε may be expressed
purely in terms of z ≡ cos θ as

ε =
α

2

z′2

1− z2
+

(pφ − zpψ)
2

2α (1− z2)
+ hz. (47)

In this way the dynamics is reduced to a single variable
moving in an effective potential

Veff(z) =
1

2α
(pφ − zpψ)

2
+ (hz − ε)(1− z2). (48)

Veff(z) is a cubic polynomial. For h > 0 motion will occur
between the two smallest roots, which must lie in [−1, 1],
while the third root is at z ≥ 1.

The solution to (47) can be found in terms of elliptic
functions. We will use this solution in the next section
to calculate the dispersion relation.

III. DISPERSION RELATION

A. Boundary Conditions

A problem in dynamics is typically an initial value
problem, where one is interested in the evolution that
results from some initial conditions. In contrast, we are
here concerned with a boundary value problem. What
boundary conditions should we impose at x = 0, L? It is
important to remember that we are concerned with find-
ing extremal configurations at fixed P , or equivalently
extremizing the functional (17)

Eu = E − uP. (49)

We now show that this is equivalent to working at fixed
pψ, ignoring the boundary conditions on ψ, and enforcing
periodic boundary conditions only on the vector n.

θ(L)− θ(0) = 0

φ(L)− φ(0) = 2πnφ. (50)
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The reason is that any extremum of Eu with periodic
boundary conditions for ψ can be gauge transformed (or
canonically transformed in the language of classical me-
chanics) to an extremum of E with twisted boundary con-
ditions by the transformation

ψ(x)→ ψ(x) +
ux

γ
, (51)

after which

Eu → E −
u2

2γ
. (52)

Recall that there are three conserved quantities in the
solution discussed in the previous section. The two con-
ditions (50) therefore give a one parameter family of so-
lutions (using h to fix M). From each member of this
family we can extract the momentum and energy

P/ρ = 2πp+ sΩ (53)

E = εL− hM +
P 2

2ρL
, (54)

where the solid angle is computed using (11). Note that
P 6= pψL/γ on account of the twisted boundary condi-
tions, but rather

P =
L

γ
(pψ − u). (55)

B. Spin helix

A particularly simple configuration corresponds to a
spin helix, in which θ(x) = θ0 while φ(x) increases by
a multiple of 2π. In the kinematic analogy, this cor-
responds to simple precession of the top. This occurs
when the two smallest roots of the cubic potential (48)
coincide. In this case φ′(x) and ψ′(x) are both constant
and the energy is simply

E =
2π2n2

φα

L
(1−m2) +

P 2

2ρL
, (56)

where φ′ = 2πnφ/L and cos θ0 = M/L ≡ m. Note that
the solid angle and polarization are related by

Ωc = Ω = 2π(1− cos θ0) = 2π(1−m), (57)

so this configuration represents a single point on the dis-
persion relation. If we fix the z-component of the mag-
netization, a smaller momentum can be obtained from a
‘canted’ helical configuration that winds around an axis
tilted relative to the z-axis. Note that in this region the
Lagrange multiplier h = 0, which is why the orientation
of the helix is free. The energy Eσ(Ω,M) is straightfor-
ward to evaluate

Helix: Eσ(Ω,M) =
2παΩ

L

(
1− Ω

4π

)
(58)

As the solid angle increases to Ωc, this axis aligns with
the z-axis. Thereafter, the only way to increase Ω at
fixed M is by forming a localized, soliton-like solution.

C. Buckling of the helix

For Ω > Ωc there is a qualitative change in the con-
figuration: θ(x) begins to develop a nonuniform profile,
corresponding to nutation of the top. Assuming that the
amplitude of this profile increases continuously from 0
(as will be verified by the numerical calculations of Sec-
tion IV), we can treat the motion about θ0 = cos−1(m)
as harmonic and solve the quantization conditions ana-
lytically.

For a single period of θ(x) motion, we have the follow-
ing conditions on the effective potential

Veff(m) = V ′eff(m) = 0 (59)

V ′′eff(m) = α

(
2π

L

)2

. (60)

For a single turn of the helix nφ = 1 and

pφ −mpψ =
2πα

L
(1−m2). (61)

The four equations (59)-(61) determine the four quanti-
ties pψ, pφ, ε, and h. There are two sets of solutions.
The first corresponds to the spin helix found before:

pψL = 2παm, pφL = 2πα, (62a)

εL2 = 2απ2(1−m2), hL2 = 0, (62b)

while the second is

pψL = 6παm, pφL = 2πα(1 + 2m2), (63a)

εL2 = 2απ2(1 + 3m2), hL2 = 8π2αm. (63b)

Both solutions give Eσ = εL − hM =
2π2n2

φα

L (1 − m2).
As we depart from Ωc, we get deviations from the helix,
which can be described by

θ(x) = θ0 + ϑ(x) (64a)

φ(x) = Qx+ ϕ(x) (64b)

with Q = 2π/L. In the case of the first solution (62),
these deviations describe the canting of the helix. Since
h = 0, the energy density ε−hz(x)+P 2/(2ρL2) = const..
Small deviations about the second solution correspond to
the appearance of a spatially localized energy density.

Ωc represents a first order transition at which the gra-
dient of the dispersion jumps. To evaluate the jump,
we return to the constrained minimization formulation
given by (20), and evaluate the energy and solid angle
to quadratic order in the deviations (64). The first or-
der terms vanish since ϑ(x) has zero average, leaving the
quadratic forms

E2 =
α

2

∫
dx
[
ϑ′2 +Q2 cos 2θ0ϑ

2

+ sin2 θ0ϕ
′2 + 2Q sin 2θ0ϕ

′ϑ
]

(65)
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Ω2 =

∫
dx

[
Q

2
cos θ0ϑ

2 + sin θ0ϑϕ
′
]
. (66)

Minimizing E2 subject to fixed Ω2 involves the quadratic
form E2 − µΩ2. The stationary points of this functional
give a generalized eigenvalue problem for the Lagrange
multiplier µ. Writing

ϑ(x) = ϑ0e
iQx + c.c (67)

ϕ(x) = ϕ0e
iQx + c.c (68)

gives a matrix eigenvalue problem, with eigenvalues µ =
Q cos θ0, 2Q cos θ0. Since µ = ∂E/∂Ω we arrive at the
simple statement that the gradient in the dispersion
jumps by a factor of 2 at the transition to a localized
solution (see Figure 7).

D. Soliton Limit

The opposite limit corresponds to almost complete po-
larization. In this situation, the magnetization axis will
approach the z-axis as we move away from a localized
configuration, so that we can regard the domain as infi-
nite with the boundary conditions

n(±∞) = ẑ. (69)

To obtain this type of solution, the conserved quantities
pφ, pψ, and ε must be chosen so that the two largest roots
z1,2 of the effective potential of Veff(z) are at z = 1, with
the smallest root z3 somewhere in [−1, 1]. In this case
z = 1 is a point of unstable equilibrium, and an excursion
to z3 can occur at any x. The effective potential is then

Veff(z) = −h(z − z3)(1− z)2, (70)

giving rise to a soliton centered at x = x0

z(x) = z3 + (1− z3) tanh2

(√
h (1− z3)

2α
(x− x0)

)
.

(71)
Using this solution, one can compute the angle φ(x), solid
angle Ω

Ω =

∫ 2π

0

(1− cos θ)dφ = 4 arctan

√
1− x3

1 + x3
, (72)

and the deviation from complete magnetization

∆L ≡
∫ ∞
−∞

[1− cos θ] dx = 2

√
2α(1− x3)

h
. (73)

Noting that for the potential (70) ε = h, we can find the
energy of this configuration

E = εL− hM +
ρP 2

2ρL

=
8α

∆L

[
1− cos

(
P

2ρs

)]
+

P 2

2ρL

(74)

FIG. 3. Soliton dispersion (74) for s = 1/2 and ∆ = 0.1.

where P = sΩ on the principal branch of the dispersion.
This dispersion relation is shown in Figure 3

The solution (71) appears in Ref. 7 on the continuum
limit of the Heisenberg chain, as well as repeatedly in the
literature on elasticity (see e.g. Ref. 13). For our pur-
poses, the dispersion relation (74) illustrates a key point
about the metastability of currents in a ferromagnetic
condensate. The scale of the soliton is ∆, meaning that
as we approach full polarization (∆ → 0) the energy di-
verges like ∆−1. This illustrates that the energy barrier
diminishes with decreasing polarization.

As Ω → 0 mod 4π, x3 → 1 and the size of the soli-
ton diverges, invalidating our assumption of an infinite
domain. Instead, we expect the configurations of a finite
system to connect to the helical configurations discussed
in the previous sections at the critical solid angle Ωc given
by (57). We next see how this happens by using the exact
solution to treat the boundary conditions more carefully.

E. Solution in terms of elliptic functions

As discussed in Section II, the general solution for z(x)
is an elliptic function, obtained as an inverse of the ellip-
tic integral [16].

x =

∫ z dz′√
P (z′)

, (75)

where P (z) = −2Veff(z)/α is a cubic polynomial. To put
this elliptic function in standard form, we write

z = 2z̃ + c, (76)

with c chosen so that the three roots of the cubic sum to
zero

c ≡
p2
ψ/(2α) + ε

3h
. (77)
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Then (75) becomes

x =

√
α

h

∫ z̃ dz̃′√
4 (z̃′ − e1) (z̃′ − e2) (z̃′ − e3)

(78)

with real roots e1 > e2 > e3 obeying e1 + e2 + e3 = 0. As
a result, z̃(x) is

z̃(x) = ℘

(√
h

α
x+ ω3

)
(79)

where ℘(x) is the Weierstrass elliptic function and ω3 is
the (imaginary) half period associated with e3

ω3 = −i
∫ e3

−∞

dz̃√
4z̃3 − g2z̃ − g3

. (80)

From the form of the effective potential (48) we can iden-
tify the Weierstrass invariants

g2 =

(
p2
ψ/2α+ ε

)2

3h2
+ 1− pϕpψ

hα

g3 =

(
p2
ψ/2α+ ε

)3

27h3
− 1

6

(
p2
ψ/2α+ ε

)
h

(pϕpψ
hα

− 1
)

− 1

2

(
ε− p2

ϕ/2α
)

h
.

(81)

The shift (77) can be found from the magnetization using

M =

∫ L

0

z dx = 2

∫ L

0

dx℘

(√
h

α
x+ ω3

)
+ cL

= −4

√
α

h
nT ζ(ω1) + cL

= L

(
c− 2ζ(ω1)

ω1

) (82)

where ζ(z) is the Weierstrass zeta function, defined as

ζ ′(z) = −℘(z) ζ(z)→ 1

z
. (83)

Furthermore, if we have one period of the θ(x) motion in
L then

L = 2

√
α

h
ω1. (84)

We can then solve the φ(x) quantization condition in
(50) in terms of h and c, and use the result to find the
momentum and energy. Ref. 16 gives expressions for the
angles φ(x), ψ(x), from which we find

i [φ(L)− φ(0)] = 2 (ζ(k)− ζ(l))ω1 − 2ζ(ω1)(k − l) (85)

FIG. 4. (Solid line) Values of the Weierstrass invariants g2,
g3 for which the quantization conditions (50) are satisfied for
m = 0.3. (Dashed lines) Curves of vanishing modular discrim-
inant (87): the top curve corresponds to the helix solution;
the lower to the soliton. For larger values of m the solid curve
would lie very close to the soliton line, though it always starts
on the helix line.

where k and l are the imaginary values of x + ω3 where
θ = 0 and π. That is,

℘(l) =
1

2
[1− c]

℘(k) = −1

2
[1 + c] .

(86)

Using (85) in the quantization condition (50) defines a
curve in the g2 − g3 plane that implicitly defines the dis-
persion relation E(P ).

As we have seen, the spin helix and the soliton cor-
respond to the merging of the two lower and two upper
roots respectively. This occurs when the modular dis-
criminant vanishes

g3
2 − 27g2

3 = 0, (87)

with g3 = ±
√

27g3
2 corresponding to the helix and soli-

ton respectively. In Figure 4 we show the curve in this
region of the g2− g3 plane that gives the correctly quan-
tized solutions for m = 0.3. The curve tracks the soliton
branch quite closely despite the modest values of the po-
larization, but terminates on the helix branch. For larger
values of the polarization the curve is essentially indis-
tinguishable from the soliton branch. This is because the
tail of the soliton is exponential, so at higher polariza-
tion we rapidly enter a regime where the quantization
condition is satisfied to a very good approximation by
the soliton.

Unfortunately, this also means that discriminating be-
tween the soliton and ‘true’ finite L solution becomes nu-
merically difficult. In the next section we will show that
a direct numerical solution of the constrained minimiza-
tion problem (20) is an easier route to finding the disper-
sion relation. However, the above analysis does indicate
a key difference between the finite size system and the
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FIG. 5. Numerically computed Eσ for m = 0.4 (dotted line),
0.6 (dot dashed), and 0.7 (dashed). Solid line shows the helix
dispersion relation Eσ(Ω) = 2παΩ

L

(
1− Ω

4π

)
.

soliton limit studied in the previous section. In the finite
system the dispersion starts from a spatially extended
helical solution at low Ω before a localized soliton-like
configuration appears at Ωc given by (57).

IV. NUMERICAL CALCULATION

In Section I B we saw that the calculation of the disper-
sion relation could be phrased in terms of the constrained
optimization problem

Eσ(Ω,M) = min
n(x)

Ω[n]=Ω
M [n]=M

α

2

∫ L

0

(
dn

dx

)2

dx. (88)

In this section we perform the numerical calculation of
Eσ(Ω,M) to verify the features that we have found an-
alytically. To this end, it is convenient to parameterize
the configurations using the stereographic variable

η(x) = tan(θ(x)/2)eiφ(x). (89)

In terms of η(x), (88) becomes

Eσ(Ω,M) = min
η(x)

Ω[η]=Ω
M [η]=M

2α

∫ L

0

dx
|η′|2

(1 + |η|2)2
(90)

M [η] =

∫ L

0

dx
1− |η|2

1 + |η|2
(91)

Ω[η] = i

∫ L

0

dx
ηη̄′ − η̄η′

1 + |η|2
. (92)

It is then straightforward to discretize each of these func-
tionals. For the solid angle, we use the discretization

Ω = −i
∑
j

log
1 + η̄jηj+1

1 + ηj η̄j+1
, (93)

FIG. 6. Example of a soliton-like configuration of n(x) for
m = 0.9, Ω = 1.1π.

which is based on the overlap of two spin-1/2 spinors

Ψj =
1√

1 + |ηj |2

(
1

ηj

)
(94)

〈Ψj |Ψk〉 =
1 + η̄jηk√

(1 + |ηj |2)(1 + |ηk|2)
. (95)

(93) has the advantage of each term never being larger
than π.

Constrained optimization is performed using the
SLSQP method, as implemented in SciPy [? ]. Results
are shown in Figure 5 for several values of the magnetiza-
tion. As discussed in Section III, the full dispersion rela-
tion in a finite system consists of two distinct regions. For
small Ω mod 4π we have a spin helix, and the dispersion
follows the result (58). At Ωc = 2π(1−cos θ) = 2π(1−m)
the helix encircles the z-axis at constant latitude. There-
after, the only way to increase Ω at fixed M is by forming
a localized, soliton-like solution (see Figure 6), with the
gradient of the dispersion jumping by a factor of two. As
the polarization approaches unity, the dispersion tends to
that of the soliton in an infinite system, with a diverging
energy barrier.

V. DISCUSSION

In Section I B we saw that the total energy has the
form

Ep(Ω,M) =
ρ

2L
(2πp+ sΩ)2 + Eσ(Ω,M) (96)

For concreteness, we now confine ourselves to the spin-
1/2 case, where α = ρ/4. In this case there is only one
branch of the dispersion, and the helix part of the dis-
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FIG. 7. Full dispersion showing metastable minimum for the
spin-1/2 case with m = 0.7. The end point of the curve
corresponds to E = 2π2ρ/L, and corresponds to the energy a
fully polarized state with a single flux quantum.

persion relation is piecewise linear

Ep =
ρ

L

[
2π2p2 + (2p+ 1)

πΩ

2

]
, 0 ≤ Ω ≤ 4π (97)

In Figure 7 we show the full form of the dispersion for
m = 0.7. The localized configurations give rise to energy
barriers that are responsible for persistent currents.

A complete analysis of metastability would involve a
treatment of the dynamics of a condensate that starts
in a current carrying state. This is beyond the scope of
this paper, but we offer some comments as to the form
such a treatment must take. For the current to decay it
must be possible for the condensate to lose momentum.
There are two ways this may happen. The explicit trans-
lational invariance of the model may be broken e.g. by a
nonuniform potential. Alternatively, the condensate may
interact with excitations that are in thermal equilibrium
in the lab frame, e.g. the normal component of a finite
temperature condensate.

Since P/(sρ) = Ω mod 4π in our model, we then

expect Ω to acquire some dynamics that may lead to
the system passing over the maximum of the dispersion
curve. Note that since this curve is the result of a con-
strained minimization problem, the maximum is a saddle
point of the energy with one negative eigenvalue to the
Hessian.

In the context of superconductors the classic Langer–
Ambegaokar–McCumber–Halperin theory [18, 19] pro-
vides a description of the decay of supercurrents in
a scalar condensate. This takes the form of a time-
dependent Ginzburg–Landau theory with a phenomeno-
logical noise term to drive the dynamics of the order
parameter. The decay of persistent currents is due to
the noise driven motion over the saddle point (or ‘phase
slip’) connecting two metastable minima. In the case
of ultracold gases, a description based on the time-
dependent Gross–Pitaevskii equation is more appropri-
ate: see Ref. 20 for recent work in this direction.

In a spinor condensate the magnetization provides a
simple way to vary the height of the energy barrier that
must be overcome. In Ref. 3 persistent currents were
observed in a two-component Bose condensate confined
to a toroidal trap. The gas was initialized in a fully
polarized state with three quanta of circulation, before
an RF pulse tips the magnetization M away from the
z-axis. The key finding was a critical z-axis polarization
of mc = 0.64, with the lifetime of current carrying state
changing from 90 s to below 20 s as the polarization is
reduced.

From Figure 7 we see that even at m = 0.7, although
there is still a metastable minimum in the dispersion, the
maximum lies below the energy E = 2π2ρ/L of a single
flux quantum in a fully polarized state. There is therefore
enough energy in such an initial state to pass over the
energy barrier. Given the simplifications of our model
(1D, incompressible condensate) and the absence of any
treatment of dynamics, this disagreement is perhaps not
too surprising. The advantage of our approach is that
it provides a simple model of persistent currents that
applies even in the incompressible limit where a scalar
condensate would flow forever.

The author thanks Stefan Baur and Nigel Cooper for
discussions at an early stage of this work.
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