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Superconductors with Magnetic Impurities: Instantons and Sub-gap States
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When subject to a weak magnetic impurity potential, the order parameter and quasi-particle
energy gap of a bulk singlet superconductor are suppressed. According to the conventional mean-
field theory of Abrikosov and Gor’kov, the integrity of the energy gap is maintained up to a critical
concentration of magnetic impurities. In this paper, a field theoretic approach is developed to
critically analyze the validity of the mean field theory. Using the supersymmetry technique we find
a spatially homogeneous saddle-point that reproduces the Abrikosov-Gor’kov theory, and identify
instanton contributions to the density of states that render the quasi-particle energy gap soft at any
non-zero magnetic impurity concentration. The sub-gap states are associated with supersymmetry
broken field configurations of the action. An analysis of fluctuations around these configurations
shows how the underlying supersymmetry of the action is restored by zero modes. An estimate of
the density of states is given for all dimensionalities. To illustrate the universality of the present
scheme we apply the same method to study ‘gap fluctuations’ in a normal quantum dot coupled
to a superconducting terminal. Using the same instanton approach, we recover the universal result
recently proposed by Vavilov et al. Finally, we emphasize the universality of the present scheme for
the description of gap fluctuations in d-dimensional superconducting/normal structures.

PACS numbers: 74.62.Dh, 71.55.-i, 74.40.+k

I. INTRODUCTION

While the spectral properties of a singlet s-wave super-
conductor are largely unaffected by weak non-magnetic
impurities [1], the pair-breaking effect of magnetic im-
purities leads to the gradual destruction of superconduc-
tivity. Remarkably, the suppression of the quasi-particle
energy gap is more rapid than that of the superconduct-
ing order parameter, admitting the existence of a narrow
‘gapless’ superconducting phase [2] in which the quasi-
particle energy gap is destroyed while the superconduct-
ing order parameter remains non-zero. Now, according
to the conventional (mean-field) description formulated
in the seminal work of Abrikosov and Gor’kov (AG), an
energy gap is maintained up to a critical concentration
of magnetic impurities (at T = 0, 91% of the critical con-
centration at which superconductivity is destroyed). Yet,
being unprotected by the Anderson theorem, it seems
likely that the gap structure predicted by the mean-field
theory is untenable and must be destroyed by ‘optimal’
fluctuations of the random impurity potential. Indeed,
since the pioneering work of AG, several authors [3–8]
have explored the nature of ‘sub-gap’ states in the super-
conducting system. The aim of this work is to present a
detailed investigation of the spectrum and profile of sub-
gap states in superconductors subject to a weak mag-
netic and non-magnetic impurity potential, thus system-
atically improving upon the mean-field theory of AG. Our
preliminary findings have already been reported in a re-
cent letter [9].

In the earliest works on the subject [3–5], attention
was focussed on the the influence of strong magnetic
impurities. In particular, in the unitarity limit, it was
shown that a single magnetic impurity leads to the local

suppression of the order parameter and creates a bound
sub-gap quasi-particle state [3]. For a finite impurity con-
centration, these intra-gap states broaden into a band [4]
merging smoothly with the continuum bulk states.

By contrast, starting with a weak magnetic impurity
distribution (i.e. one in which the magnetic scatter-
ing can be treated within the Born approximation), the
mean-field theory of AG [2] predicts a gradual suppres-
sion of the quasi-particle energy gap. Defining the di-
mensionless parameter

ζ ≡ 1

τs|∆| , (1)

where |∆| represents the value of the homogeneous self-
consistent order parameter, and τs denotes the Born scat-
tering time due to magnetic impurities, the AG theory
shows the gap to follow the relation

Egap(τs) = |∆|
(
1 − ζ2/3

)3/2

(2)

showing an onset of the gapless region at ζ = 1 (note
h̄ = 1 throughout). Within the same mean-field theory,
for ζ ≤ 1, the self-consistent order parameter varies as
|∆| = |∆̄| exp[−πζ/4] where |∆̄| represents the order pa-
rameter of the clean superconductor, confirming that the
order parameter is finite at the onset of the gapless phase.
The precise variation of the quasi-particle energy gap is
compared to that of the self-consistent order parameter in
Fig. 1. Staying within the framework of the mean-field
theory, one can obtain a smooth interpolation between
the strong and weak impurity scattering behaviors [4].
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FIG. 1. Variation of the energy gap Egap and the
self-consistent order parameter |∆| as a function of (normal-
ized) scattering rate 2/τs|∆̄|.

However, even for weak disorder, it is apparent that
optimal fluctuations of the random potential must gen-
erate sub-gap states in the interval 0 < ζ < 1, and
therefore provide non-perturbative corrections to the self-
consistent Born approximation used by AG. Extending
the arguments of Balatsky and Trugman [7], a fluctua-
tion of the random potential which leads to an effective
Born scattering rate 1/τ ′s in excess of 1/τs over a range
set by the superconducting coherence length,

ξ =

(
D

|∆|

)1/2

, (3)

induces quasi-particle states down to energies Egap(τ ′s).
These sub-gap states are localized, being bound to the
region or ‘droplet’ where the scattering rate is large.

The situation bears comparison with band tail states
in semi-conductors. Here rare or optimal configurations
of the random impurity potential generate bound states,
known as Lifshitz tail states [10], which extend below
the band edge. However, the correspondence is, to some
extent, superficial: band tail states in semi-conductors
are typically associated with smoothly varying, nodeless
wavefunctions. By contrast, the tail states below the
superconducting gap involve the superposition of states
around the Fermi level. As such, one expects these states
to be rapidly oscillating on the scale of the Fermi wave-
length λF , but modulated by an envelope which is local-
ized on the scale of the coherence length ξ. This differ-
ence is not incidental. Firstly, unlike the semi-conductor,
one expects the energy dependence of the density of
states in the tail region below the mean-field gap edge
to be ‘universal’, independent of the nature of the weak
impurity distribution, but dependent only on the pair-
breaking parameter ζ. Secondly, as we will see, one can
not expect a straightforward extension of existing theo-
ries [10,11] of the Lifshitz tails to describe the profile of
tail states in the superconductor.

In the BCS approximation, the random system we con-
sider is specified by the Gor’kov Hamiltonian

Ĥ =

(
Ĥ0 |∆|σsp

2

|∆|σsp
2 −ĤT

0

)

ph

(4)

where the matrix components index the particle/hole
content, and

Ĥ0 =
p̂2

2m
− ǫF + V (r) + JS(r) · σsp

denotes the normal component of the random Hamilto-
nian. Here we take ∆ = g∆〈c↓c↑〉 to be spatially homoge-
neous and determined self-consistently from the conven-
tional AG mean-field theory. We will assess the validity
of this assumption below. In addition to the weak poten-
tial impurity distribution V (r), the particles experience a
quenched random magnetic impurity distribution JS(r)
where J represents the exchange coupling and Pauli ma-
trices {σsp

i } operate on the spin indices. The magnetic
S(r) and non-magnetic V (r) random impurity potentials
are both taken to be Gaussian δ-correlated with zero
mean and variance

〈JSα(r)JSβ(r
′)〉S =

1

6πντs
δd(r − r′)δαβ

〈V (r)V (r′)〉V =
1

2πντ
δd(r − r′)

respectively, and ν represents the average density of
states (DoS) per spin of the normal system.

To keep our discussion simple, and to make contact
with the AG theory, we will take the quenched dis-
tribution of magnetic impurities to be ‘classical’ and
non-interacting throughout. For practical purposes,
this entails the consideration of structures where both
the Kondo temperature [6] and, more significantly, the
RKKY induced spin glass temperature [12] are smaller
than the relevant energy scales of the superconductor.
The remaining energy scales are arranged in the quasi-
classical and dirty limits:

ǫF ≫ 1/τ ≫ (|∆|, 1/τs) (5)

where τ represents the transport time associated with
non-magnetic impurities. We remark that these limits
are not compatible with the situation in which the mag-
netic impurities provide the only source of scattering,
i.e. ξ ∼ ℓ = vF τs. We should not, therefore, expect a
straightforward comparison with the analysis of Ref. [7].

Within the approximations above we will derive a
quasi-classical field theory of the disordered supercon-
ducting system. Following the approach of Ref. [13] we
will express spectral properties of the system in terms of
an intermediate energy scale action which accommodates
the quantum interference properties of the superconduct-
ing system. By investigating stationary inhomogeneous
instanton field configurations of the action, we will ex-
pose the structure and profile of the sub-gap states, and
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thereby obtain an analytical expression for the DoS to
exponential accuracy. Finally, we will comment on the
universality of the present scheme by applying the same
technique to investigate ‘gap fluctuations’ in a quantum
dot coupled by open channels to a superconducting ter-
minal.

Although the analysis is straightforward, the technol-
ogy is somewhat involved. We have therefore decided to
summarize the main conclusions of this investigation here

in the introduction. In particular, we will show that, in
the vicinity of the mean-field gap edge, the sub-gap DoS
of the d-dimensional system is dominated by tail states
which are confined to droplets of size

r0(ǫ) ∼
ξ

(1 − ζ2/3)1/4

( |∆|
Egap − ǫ

)1/4

.

The corresponding sub-gap DoS takes the form

ν(ǫ < Egap)

ν
∼ exp

[
−4πg(ξ/L)d−2fd(ζ)

(
Egap − ǫ

|∆|

)(6−d)/4
]

where g = νDLd−2 denotes the bare dimensionless con-
ductance and fd(ζ) = adζ

−2/3(1 − ζ2/3)−(2+d)/8 repre-
sents a dimensionless function of the control parameter ζ
(ad const.). When reparameterized in terms of the DoS
just above the mean-field gap edge [14]

ν(ǫ > Egap) ≃ 1

πLd

√
ǫ− Egap

∆3
g

(6)

where

∆−3/2
g = 4πνLd

√
2

3|∆|ζ
−2/3(1 − ζ2/3)−1/4

the expression for the sub-gap DoS can be brought to the
more compact form

ν(ǫ < Egap)

ν
∼ exp

[
−ãd

(r0
L

)d(Egap − ǫ

∆g

)3/2
]

with ãd some numerical constant.
In the zero-dimensional system, although the interpre-

tation of the optimal fluctuation as a localized droplet
is no longer appropriate, the expression above correctly
interpolates to d = 0 and coincides with the universal ex-
pression for gap fluctuations proposed in Ref. [15]. The
surprising dependence of the result on the dimensionless
distance from the mean-field gap is one of the reasons
why a Lifshitz argument appears difficult to construct
for this problem.

The paper is organized as follows: in section II a theory
of the statistical properties of the Gor’kov Green function
is developed within the framework of a supersymmetric
field theory involving a non-linear σ-model functional.
Here we follow closely the analysis of Ref. [13] and [16]
(c.f. Ref. [17]). As a result we identify the conventional
AG mean-field equation with the homogeneous saddle-
point equation of the effective action. In section III we
show that the non-vanishing of the DoS beneath the gap
predicted by the standard AG theory is due to the ap-
pearance of inhomogeneous “instanton” saddle points of

finite action. We identify the profile of these instantons
with the envelope modulating the quasi-classical sub-gap
states. The instanton configurations considered break
the underlying supersymmetry of the action, and a de-
tailed examination of fluctuations is required to under-
stand how supersymmetry is restored by zero modes, as
well as to appreciate fully how these configurations are
able to contribute to the DoS. In section IV we examine
the zero dimensional limit of the problem and compare
our results to the recent literature [8,15]. In doing so, we
provide an explanation of the universal results reported
in Ref. [15], and discuss the universality of the d > 0
result. Finally, in section V we speculate on potential
generalizations of the results presented here.

II. FIELD THEORY OF THE DISORDERED

SUPERCONDUCTOR

The construction of the field theory of the disor-
dered superconductor follows the quasi-classical method
of Eilenberger [18] and Usadel [19] elevated to the level of
an effective action. The starting point of the analysis is
the generating functional for the single-particle Gor’kov
Green function for the non-interacting quasi-particle Bo-
goluibov Hamiltonian. Here we borrow our notation from
Ref. [16].

A. Generating Functional

Single-particle properties of the Gor’kov Hamilto-
nian (4) are obtained from the generating functional

Z[J ] =

∫
D(ψ̄, ψ)e

∫
dr (iψ̄(Ĥ−ǫ−)ψ+ψ̄J+J̄ψ), (7)

where ǫ− ≡ ǫ − i0 and the supervector fields have
the internal structure ψ̄ = ( ψ̄↑ ψ̄↓ ψ↑ ψ↓ ), ψT =
(ψ↑ ψ↓ ψ̄↑ ψ̄↓ ). As usual, by introducing both com-
muting and anticommuting elements the normalization
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Z[0] = 1 is assured. (The generalization to the con-
sideration of higher point functions, which involves the
extension of the field space, follows straightforwardly.)

To condense the notation, it is convenient to perform
the rotation ψ 7→ ψ′ = Uψ, ψ̄ 7→ ψ̄′ = ψ̄U † with

U =

(
1 0
0 iσsp

2

)

ph

,

after which the Gor’kov Hamiltonian takes the form

Ĥ =

(
p̂2

2m
+ V (r) − ǫF

)
⊗ σph

3 + JS(r) · σsp + |∆|σph

2 .

The unusual phase coherence properties of the super-
conducting system rely on the particle/hole or charge
conjugation symmetry

Ĥ = −σph

2 ⊗ σsp

2 Ĥ
Tσsp

2 ⊗ σph

2 . (8)

To easily accommodate these effects, it is convenient to
introduce the further space doubling,

2ψ̄(Ĥ − ǫ−)ψ = ψ̄(Ĥ − ǫ−)ψ + ψT (ĤT − ǫ−)ψ̄T

= ψ̄(Ĥ − ǫ−)ψ + ψT (σph

2 ⊗ σsp

2 Ĥσ
sp

2 ⊗ σph

2 − ǫ−)ψ̄T

= 2Ψ̄(Ĥ − ǫ−σ
cc

3 )Ψ (9)

where, defining the Pauli matrix σcc
3 which operates in

the charge-conjugation (cc) space,

Ψ =
1√
2

(
ψ

σph
2 ⊗ σsp

2 ψ̄
T

)

cc

,

Ψ̄ =
1√
2

( ψ̄ −ψTσph
2 ⊗ σsp

2 )
cc
.

This completes the formulation of the generating func-
tional as a field integral involving 16-component super-
vector fields Ψ and Ψ̄. The latter obey the symmetry
relations

Ψ = −σph

2 ⊗ σsp

2 γ Ψ̄T , Ψ̄ = ΨTσph

2 ⊗ σsp

2 γ
−1 (10)

with γ = Ebbiσ
cc
2 − Effσ

cc
1 , where Ebb = diag(1, 0)bf

and Eff = diag(0, 1)bf project into the Boson-Boson and
Fermion-Fermion sectors respectively.

B. Ensemble Averaging

Cast as a field integral, the impurity average of the gen-
erating functional over the Gaussian distributed random
impurity potentials is straightforward. Separating the
regular from the disordered components of the Hamilto-
nian Ĥ = Ĥ0+V (r)σph

3 +JS(r)·σsp, an ensemble average
over the random potentials obtains

〈Z[0]〉V,S =

∫
D(Ψ̄,Ψ) exp

[∫
dr

(
iΨ̄(Ĥ0 − ǫ−σ

cc

3 )Ψ − 1

4πντ
(Ψ̄σph

3 Ψ)2 − 1

12πντs
(Ψ̄σspΨ)2

)]
. (11)

The interactions generating by the impurity averag-
ing can be decoupled by the introduction of a Hubbard-
Stratonovich field. Beginning with the non-magnetic dis-
order, slow modes of the action are identified by rewriting
the action in the approximate form

1

4πντ

∫
dr
(
Ψ̄σph

3 Ψ
)2 ≃ 1

2πντ

∑

|q|<ℓ−1

str ζ(−q)ζ(q),

where ζ(q) =
∑

k Ψ(k) ⊗ Ψ̄(−k + q)σph
3 . The latter can

be decoupled by the slowly varying 16 × 16 supermatrix
field Q(r) according to the identity

exp

[
− 1

2πντ

∑

q

str ζ(q)ζ(−q)

]

=

∫
DQ exp

[
∑

q

str

(
πν

8τ
Q(q)Q(−q) − 1

2τ
Q(q)ζ(−q)

)]
.

The symmetry properties of the fields Q(r) are inherited
from the dyadic product Ψ(r) ⊗ Ψ̄(r)σph

3 . Making use of
Eq. (10) one finds the symmetry relations

Q = σph

1 ⊗ σsp

2 γQ
Tγ−1σph

1 ⊗ σsp

2 . (12)

The interaction generated by the magnetic impurity
averaging can be treated [20] by performing all possible
pairings and making use of the saddle-point approxima-
tion Q(r) = 2〈Ψ(r) ⊗ Ψ̄(r)σph

3 〉Ψ/πν. This leads to the
replacement

1

12πντs

∫
dr
(
Ψ̄σspΨ

)2

7→ πν

24τs

∫
dr str (Qσph

3 ⊗ σsp)
2
.

Such an approximation, which neglects pairings at non-
coincident points is allowed by the strong inequality
(ℓ/ξ)d ≪ 1. In addition we discard the contraction
〈Ψ̄σspΨ〉Ψ. The term generated by this procedure could
in any case be decoupled by a slow Bosonic field S(r)
which would immediately be set to zero for the singlet
saddle-points that will be the basis of this paper.

Gaussian in the fields Ψ and Ψ̄, the functional integra-
tion can be performed explicitly after which one obtains
〈Z[0]〉V,S =

∫
DQ exp(−S[Q]) where
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S[Q] = −
∫
dr

[
πν

8τ
str Q2 − 1

2
str ln

(
σph

3 (Ĥ0 − ǫ−σ
cc

3 ) +
i

2τ
Q

)
− πν

24τs
str (Qσph

3 ⊗ σsp)2
]
.

Further progress is possible only within a saddle-point
approximation. Following Ref. [13], the saddle-point
analysis will be conducted in a two-step process:

C. Saddle-point Approximation and the Non-linear

σ-model

The first task is to make use of the quasi-classical pa-
rameter ǫF τ ≫ 1 to construct an intermediate energy
scale action. Dropping the symmetry breaking perturba-
tions ǫ, |∆| and 1/τs, a variation of the action with re-
spect to fluctuations of Q obtains the saddle-point equa-
tion

Q(r) =
i

πν
〈r|[i0σcc

3 ⊗ σph

3 + ĥ0 + iQ/2τ ]−1|r〉 ,

where ĥ0 = p̂2/2m − ǫf. Taking into account the ana-
lytical properties of the Green function and the quasi-
classical limit ǫfτ ≫ 1, one obtains the solution Q0 =
σph

3 ⊗ σcc
3 . However, as usual, this saddle-point is not

unique. In particular, Q = TQ0T
−1 is also a solution,

for any constant matrix T which is consistent with the
fundamental symmetry (12) for Q. Transverse fluctua-
tions of Q away from the Q2 = 11 manifold may be inte-
grated out within the saddle-point approximation due to
the large parameter νLd/τ ≫ 1, where L is the system
size [20]. Restricting attention to the manifold generated
by the non-linear constraint Q2 = 11, an effective action
is obtained by allowing T to vary in space and expanding
to second order in gradients of T , and first order in ǫ, |∆|,
and 1/τs

S[Q] = −πν
8

∫
dr str

[
D(∂Q)2 − 4i (ǫ−σ

cc

3 + |∆|σph

2 ) σph

3 Q− 1

3τs
(Qσph

3 ⊗ σsp)
2

]
. (13)

Here D = v2
F τ/d represents the classical diffusion con-

stant associated with the non-magnetic impurities. In
particular, the quasi-particle DoS is obtained from the
functional integral

〈ν(ǫ, r)〉V,S =
ν

4
Re 〈str (σbf

3 ⊗ σph

3 ⊗ σcc

3 Q(r))〉Q . (14)

The numerical factor leads to a DoS of 4ν for the system
as |ǫ| → ∞. This is because both the particle-hole struc-
ture of the original Bogoliubov Hamiltonian and the spin
each cause a doubling of the DoS.

This completes the derivation of the intermediate en-
ergy scale action. In the following section we will inves-
tigate the action (13) within mean-field theory and the
influence of soft fluctuations on the low-energy properties
of the system.

D. AG Mean-Field Theory and Fluctuations

The presence of symmetry-breaking terms in (13) orig-
inating from the order parameter and the magnetic impu-
rity potential means that a mean-field analysis is already
non-trivial. To assimilate the effect of these terms, and
to establish contact with the AG theory, it is necessary
to explore the saddle-point equation.

Varying the non-linear σ-model action with respect to
fluctuations of Q, subject to the non-linear constraint,
one obtains the saddle-point or mean-field equation,

D∂ (Q∂Q) + i [Q, ǫ−σ
cc

3 ⊗ σph

3 + i|∆|σph

1 ]

+
1

6τs
[Q, σph

3 ⊗ σspQσph

3 ⊗ σsp] = 0.

With the Ansatz:

Qmf =
[
σcc

3 ⊗ σph

3 cosh θ̂ + iσph

1 sinh θ̂
]
⊗ 11sp,

where the elements θ̂ = diag(θ1, iθ)bf are diagonal in
the superspace, the saddle-point equation decouples into
Boson-Boson and Fermion-Fermion sectors, and takes the
form

∂2
r/ξ θ̂ + 2i

(
cosh θ̂ − ǫ

|∆| sinh θ̂

)
− ζ sinh(2θ̂) = 0 , (15)

a result reminiscent of the Usadel equation of quasi-
classical superconductivity [19]. This is no coincidence:
when subject to an inhomogeneous order parameter, the
same effective action (13) describes the proximity ef-
fect in a hybrid normal/superconducting compound [13].
In the present context, the spatially homogeneous form
of Eq. (15) should be combined with the self-consistent
equation for the order parameter

|∆| =
πνg∆
β

∑

n

sin θn .
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Here g∆ is the BCS coupling constant and θn indicates
that the solution of the Usadel equation is taken at Mat-
subara frequency ǫ → iǫn. These two equations then
coincide with the mean-field equations obtained by AG,
and correctly reproduce the known form of Egap as spec-
ified by Eq. (2).

The AG solution is not unique: for ǫ → 0, the saddle-
point equation admits an entire manifold of homoge-
neous solutions parameterized by the transformations
Q = TQmfT

−1 where now T = 11ph ⊗ 11sp ⊗ t and
t = γ(t−1)T γ−1. Soft fluctuations of the fields, which
are controlled by a non-linear σ-model defined on the
manifold T ∈ OSp(2|2)/GL(1|1) (symmetry class D in
the classification of Ref. [21]), control the low-energy,
long-range properties of the gapless system giving rise
to unusual localization and spectral properties. (For a
comprehensive discussion of the physics of the gapless
phase, we refer to Refs. [22–26].) The phenomenology of
Class D in the context of the gapless phase of the present
system will be the subject of a forthcoming paper [27].
Here we focus on the gapped phase, where Class D fluc-
tuations are just one of a host of massive modes that are
unimportant in the description of sub-gap states.

This completes the formal description of the bulk su-
perconducting phase. The solution of the AG mean-field
equation provides an adequate description of the bulk
extended states. Soft fluctuations around the AG mean-
field describe phase coherence effects due to quantum
interference. However, within the present scheme it is
not yet clear how to accommodate sub-gap states in the
gapped phase of the AG theory. To identify such states,
it is necessary to return to the saddle-point equation (15)
and seek spatially inhomogeneous solutions.

III. INSTANTONS AND SUB-GAP STATES

Although the reduction and eventual destruction of
the quasi-particle energy gap predicted by the AG mean-
field theory can be reasonably justified on purely physical
grounds, the integrity of the gap of the range 0 < ζ < 1
is less credible. Once time-reversal is symmetry is broken
and the protection of Anderson’s theorem is lost, there
remains no reason why a sharp gap should persist. Add
to this the observation that the spin scattering rate must
be subject to spatial fluctuations from the average value
1/τs, and one concludes that corrections to the DoS pre-
dicted by the AG theory must lead to the appearance of
sub-gap states analogous to “band tails” in a disordered
semiconductor [10,11].

This analogy is of course not new [7,8] nor, as far as
practical calculation in the present formulation is con-
cerned, is it particularly deep. This is because all aver-
ages have already been taken, so we can not look for an
optimal fluctuation of some potential, as in the classic
approaches to the study of band tail states in disordered
semi-conductors [11]. However, these studies hint at how

one can proceed.
Band tail states in semi-conductors can be studied

within the same functional integral formulation. In par-
ticular, the generating function of the single-particle
Green function of a normal disordered conductor can be
presented in the form of a supersymmetric field integral

Z[0] =

∫
D(Ψ, Ψ̄) exp

[
i

∫
drΨ̄

(
ǫ+ − p̂2

2m
− V (r)

)
Ψ

]
,

where, once again, the random impurity distribution is
drawn from a Gaussian δ-correlated white-noise impurity
potential. The optimal fluctuation method involves mini-
mizing the action with respect to fluctuations in the fields
Ψ and potential V . This involves seeking inhomogeneous
solutions of the non-linear Schrödinger equation

(
ǫ− p̂2

2m
− V (r)

)
Ψ = 0,

where the corresponding optimal potential is determined
self-consistently by the relation V (r) = −|Ψ(r)|2/2πντ .
In the supersymmetric formulation, band tail states are
identified with supersymmetry broken inhomogeneous so-
lutions of the saddle-point equation (see Cardy [28] and
Affleck [29]). Indeed, the anticipated exponential sup-
pression of the DoS necessitates a breaking of supersym-
metry to support a finite action. Here the phrase “su-
persymmetry breaking” is potentially misleading. We
use it only to refer to field configurations, ubiquitous in
the problems under discussion here, that do not respect
the parity between Bose and Fermi degrees of freedom.
However, any such configuration is just one member of a
degenerate manifold differing by supersymmetric trans-
formations. The latter maintain the invariance of the
generating functional Z[0] under global supersymmetric
transformations.

What does this tell us about the identification of opti-
mal fluctuations and sub-gap states in the superconduc-
tor? Following the analysis above, one might guess that
sub-gap states are associated with inhomogeneous con-
figurations of the Ψ field action. However, we anticipate
that optimal solutions corresponding to sub-gap states
are localized on a length scale in excess of the supercon-
ducting coherence length. In the dirty limit, ξ ≫ ℓ≫ λF ,
this implies that the localized sub-gap states are quasi-
classical in nature. Their existence on the level of the Ψ
field action will be buried in the fast λF oscillations of
the wavefunction. To reveal the sub-gap states, we must
first remove the fast short length scale fluctuations of the
quasi-classical Green function and look for an equation
of motion for the slowly varying envelope of the wave-
function. But this is just the program of the usual quasi-
classical method.

The term “sub-gap states” is a little misleading in this
context. Band tails are bound states of some rare poten-
tial that sit by themselves below the bulk of the spec-
trum. Each rare configuration that make the gap soft
in the present case will give rise to many states beneath
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the AG gap. Thus the term “gap fluctuation”, used in
Ref. [15] to describe the zero dimensional SN system, may
be more appropriate.

As well as being quasi-classical in nature, the existence
of sub-gap states is not affected by working in the dirty
limit. As such, their existence must be accommodated
in the non-linear σ-model functional (13) since the valid-
ity of this description relied only on the quasi-classical
parameter ǫF τ ≫ 1 and the dirty limit assumption.
To identify sub-gap states in the present formalism, we
should therefore investigate inhomogeneous solutions of
the low-energy saddle-point equation in Q — the Us-
adel equation [19]. Such a solution should be thought
of as defining an envelope for the quasi-classical sub-gap
states.

Therefore, let us revisit the mean-field equation and
look for inhomogeneous solutions at energies ǫ < Egap.
To focus our discussion, let us begin by restricting at-
tention to the quasi one-dimensional geometry. To stay
firmly within the diffusive regime, we therefore impose
the requirement that the system size L be much smaller
than the localization length of the normal system ξloc. ≃
νLwD, where Lw denotes the cross-section. Later, in
section III C, we will generalize our discussion to encom-
pass systems of higher dimension. Furthermore, since,
over the interval 0 < ζ < 1, the quasi-particle energy
gap varies more rapidly than the superconducting order
parameter, we will neglect self-consistency of the order
parameter. Taking self-consistency into account will not
alter our qualitative findings, and will only weakly affect
the quantitative results.

A. Instantons in the Quasi One-dimensional

Geometry

To investigate inhomogeneous solutions of the mean-
field equation (15) it is convenient to recast the equation
in terms of its first integral

(∂x/ξθ̂)
2 + V (θ̂) = const, (16)

where

V (θ̂) = 4i
(
sinh θ̂ − ǫ

∆
cosh θ̂

)
− ζ cosh 2θ̂

denotes the complex potential. Let us denote by θag the
values of θ1 and iθ at the conventional saddle point, and
focus on an energy ǫ below the gap predicted by the AG
theory. Here Im θag = π/2 such that the mean-field
DoS νag(ǫ) = 4νRe cosh θag vanishes. The correspond-
ing value of Re θag depends sensitively on the energy,
with Re θag = 0 for ǫ = 0.

Considering the Boson-Boson sector only, if we require
that θ1(x → ±∞) = θAG, what kind of inhomogeneous
solution is possible? The values of θ1 at which ∂xθ1 = 0
can be identified by considering the complex (dimension-
less) potential function V (θ1) from which we can deter-
mine the endpoints of the ‘motion’ in the complex plane,

just as one would use a real potential normally. By in-
spection one may see that, on the line Im θ1 = π/2,
the potential is purely real. This is not the only con-
tour where Im V = 0, but, by considering forces, it is
not hard to see that either Im θ1 = π/2 always during
the motion, or θ1 follows a trajectory with an endpoint
at Im θ1 < 0. For reasons outlined below, we will dis-
count this latter possibility. The former case amounts
to considering “bounce” trajectories in the real potential
V (iπ/2 + φ) = Vr(φ) where

Vr(φ) ≡ −4

(
coshφ− ǫ

|∆| sinhφ

)
+ ζ cosh 2φ. (17)

A typical potential is shown in Fig. 2.

−4 −2 0 2 4
−15

−10

−5

0

5

AG

0Dφ

φ

φ

VR

FIG. 2. Potential Vr(φ) = V (iπ/2 + φ) for ǫ/|∆| = 0.1 and
ζ = 0.2. The AG saddle point corresponds to the central max-
imum. The saddle point marked φ0d is used in the analysis of
the zero-dimensional problem (section IV).

Now integration over the angles θ̂ is constrained to
certain contours [20]. Is the bounce solution accessible
to both? As usual, the contour of integration over the
Boson-Boson field θ1 includes the entire real axis, while
for the Fermion-Fermion field, iθ runs along the imagi-
nary axis from 0 to iπ. With a smooth deformation of
the integration contours, the AG saddle-point is accessi-

ble to both the angles θ̂ [13]. By contrast, the bounce
solution and the AG solution can be reached simultane-
ously by a smooth deformation of the integration con-
tour only for the Boson-Boson field θ1 (see Fig. 3). The
bounce solution is therefore associated with a breaking of
supersymmetry at the level of the saddle point.
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FIG. 3. Integration contours for Boson-Boson and
Fermion-Fermion fields in the complex θ̂ plane. The bounce
solution for ǫ = 0 (labelled as ‘b’) is shown schematically.

Thus we have identified an inhomogeneous saddle-
point configuration for which the supersymmetry is bro-
ken: θ1 executes a bounce whilst iθ remains at the mean-
field value θag. The symmetry broken solution then in-
curs the (finite) real action

S = 4πνLW (D|∆|)1/2Sφ(ǫ/|∆|, ζ)

where, defining φ′ as the endpoint of the motion,

Sφ ≡
∫ φ′

φAG

dφ
√
Vr(φag) − Vr(φ). (18)

Now, as mentioned above, there exists a second pos-
sibility for a bounce solution in which one moves away
from θag parallel to the imaginary axes. Indeed, such a
solution would seem to be a natural candidate for the
Fermion-Fermion field iθ. However, since the endpoint
for this trajectory lies at Re θ < 0 outside the integra-
tion domain which runs from 0 to π, this would seem to
be excluded.

As ǫ approaches Egap from below, the potential (17)
becomes more shallow, with the maximum merging with
one of the minima when we reach the gap. Near the
edge, up to an irrelevant constant, an expansion of the
potential in powers of (φ− φag) leads to the cubic form

Vr[φ] ≃ −α
(
Egap − ǫ

|∆|

)1/2

(φ− φag)2

+β(φ− φag)3 (19)

where the dimensionless coefficients are specified by

α = 6

√
2

3

(
Egap

|∆|

)1/6

, β = 2

(
ζEgap

|∆|

)1/3

. (20)

Note that, making use of Eq. (2), both of these coeffi-
cients depend solely on the dimensionless parameter ζ.
From this expansion, one can obtain an analytic solution
for Sφ. To leading order in (Egap − ǫ)/|∆| one finds

Sφ =
4

15

α5/2

β2

(
Egap − ǫ

|∆|

)5/4

. (21)

This approximation is shown in Fig. 4 along with the ex-
act result obtained by numerical integration. Note that
the action vanishes exactly at the gap. For completeness
we give the explicit form of the bounce solution

φ(x) − φag =
α

β

1

cosh2(x/2r0)
,

where the extent of the instanton is set by

r0(ǫ) =
ξ

α1/2

( |∆|
Egap − ǫ

)1/4

. (22)

Indeed the size of the instanton is easily understood from
the quadratic “stiffness” term in Eq. (19). Thus one finds
that, while the overall scale is set by the superconducting
coherence length ξ, the size of the droplet diverges both
as ǫ approaches Egap and, noting that α ∼ (1− ζ2/3)1/4,
as one approaches the gapless phase ζ → 1.

φ
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  (

ε)
>/
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gapE
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/|∆|

/|∆|gap
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ε/|∆|

FIG. 4. Action Sφ for ζ = 0.5 obtained numerically (solid
curve) together with the expansion in (Egap − ǫ)/|∆| (dotted
curve) as determined by Eq. (19). Note that the action van-
ishes as ǫ → Egap. The AG solution for the DoS is shown
inset.

This completes the analysis of the saddle-point solu-
tion together with the corresponding action. However,
as this level we are presented with two problems:

• the contribution of a second saddle point
would seem to spoil the normalization condition
〈Z[0]〉V,S = 1, which should be preserved within
the saddle point approximation;

• confined to the line Im θ = π/2, when substituted
into the DoS source (14), the bounce configuration
does not appear to generate states!

The resolution of both problems lies in the nature of the
fluctuations around the symmetry broken mean-field so-
lution. These field fluctuations can be separated into “ra-
dial” and “angular” contributions. The former involve

fluctuations of the diagonal elements θ̂, while the latter
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describe rotations including those Grassmann transfor-
mations which mix the bf sector [30]. Both classes of
fluctuations play a crucial role.

B. Fluctuations

Before turning to the technical analysis, let us out-
line qualitatively the influence of the fluctuations around
the mean-field. As usual, associated with radial fluc-
tuations around the bounce, there exists a zero mode
(due to translational invariance of the solution), and a
negative energy mode. The latter, which necessitates
a π/2 rotation of the corresponding integration contour
to follow the line of steepest descent (c.f. Ref. [31] and
see below), has two effects: firstly it ensures that the
non-perturbative contributions to the local DoS are non-
vanishing, and secondly, that they are positive. Turning
to the angular fluctuations, the breaking of supersymme-
try is accompanied by the appearance of a Grassmann
zero mode separated by a gap from higher excitations
which restores the global supersymmetry (c.f. spin sym-
metry breaking in a ferromagnet of finite extent). The
zero mode ensures that the symmetry broken inhomoge-
neous saddle-point configurations respect the normaliza-
tion condition 〈Z[0]〉V,S = 1.

To formally investigate the fluctuation determinant, let
us implement the rational parameterization

Q = Rσph

3 ⊗ σcc

3

1 + iP

1 − iP
R−1, (23)

where the condition P = σph
2 ΓPTΓ−1σph

2 with

Γ ≡ σcc

3 γ = Ebb ⊗ σcc

1 − iEff ⊗ σcc

2 ,

is imposed by (12). With this choice, a variant of that
used in Ref. [32], the measure is trivial [20]. R rotates Q
from the metallic saddle point σph

3 ⊗ σcc
3 to the bounce

configuration:

R(x) = exp

[
1

2
σph

2 ⊗ σcc

3 θ̂(x)

]
.

Defining

P =

(
C A
B ΓCTΓ−1

)

ph

,

where A = −ΓATΓ−1 and B = −ΓBTΓ−1, the condition
Q2 = 11 requires [σph

3 ⊗ σcc
3 , P ]+ = 0, or

[σcc

3 , C]+ = [σcc

3 , A]− = [σcc

3 , B]− = 0 .

Thus the matrix field C is off-diagonal in the cc space,
while A and B are diagonal. In fact, the field fluctu-
ations C describe the low-energy quantum interference
effects — the soft Class D modes. However, the fluctu-
ations contained within the fields C are oblivious to the
supersymmetry breaking. We will therefore deal only
with the fluctuations that are parameterized by A and
B. (Moreover, we will neglect the massive spin triplet
fluctuations.)

With the explicit parameterization [33]

A =




sb 0 η̄A 0
0 −sb 0 ηA

−ηA 0 sf 0
0 η̄A 0 −sf




B =




−s∗b 0 η̄B 0
0 s∗b 0 ηB

−ηB 0 s∗f 0
0 η̄B 0 −s∗f


 ,

an expansion of the action (13) to quadratic order around
the bounce configuration

θ̂(x) =

(
θ1(x) 0

0 θag

)

bf

.

obtains

S = 4πνLW (D|∆|)1/2(Sφ + Sq)

where Sφ represents the contribution from the saddle-
point alone (18), and

Sq =

∫
du
[
(|∂sb|2 + |∂sf|2) + V ′(φ)s′b

2
+ V ′′(φ)s′′b

2
+ V ′(φag)s′f

2
+ V ′′(φag)s′′f

2
]

+

∫
du
[
(∂ξ̄+∂ξ+ + ∂ξ̄−∂ξ−) + V+ξ̄+ξ+ + V−ξ̄−ξ−

]
, (24)

where sb/f ≡ s′
b/f + is′′

b/f, ξ± ≡ (ηB ± ηA)/
√

2, ξ̄± ≡
(η̄B ± η̄A)/

√
2, u ≡ x/ξ and θag = iπ/2 + φag. Here the

various potentials are given by

V ′(φ) = 2

(
coshφ− ǫ

|∆| sinhφ− ζ cosh 2φ

)

V ′′(φ) = (∂φ)2 + 2

(
coshφ− ǫ

|∆| sinhφ− ζ sinh2 φ

)
,

and

V±(φ) =
(∂φ)2

4
+ coshφ+ coshφag

9



− ǫ

|∆| (sinhφ+ sinhφag) − ζ

2
(cosh 2φ+ cosh 2φag)

−ζ (sinhφ sinhφAG ∓ coshφ coshφAG) .

As a check, let us consider the conventional saddle
point. At ǫ = 0 (for simplicity), φ = φag = 0, and
the quadratic action assumes the form

Sq =

∫
du
(
|∂sb|2 + |∂sf|2 + ∂ξ̄+∂ξ+ + ∂ξ̄−∂ξ−

)

+2

∫
du
[
|sb|2 + |sf|2 + ξ̄+ξ+ + ξ̄−ξ−

−ζ(s′b
2

+ s′f
2

+ ξ̄−ξ−)
]
.

This action is manifestly supersymmetric and, therefore,
performing the integrations over all fields gives unity.
(Moreover, since ζ < 1 in the gapped phase, the inte-
gral is manifestly convergent.) This in why the usual AG
DoS is just given by evaluating the source (14) at the
supersymmetric AG saddle point.

Since V ′(φag) and V ′′(φag) are both positive definite,
integration over the Fermion-Fermion degrees of freedom
merely generates some (weakly energy dependent) posi-
tive prefactor. The Boson-Boson sector is more interest-
ing. In particular, it is straightforward to verify that the
action for the components s′b simply reflects the longitu-
dinal variation

1

2

∫
dx

∫
dx′∆θ1(x)

δ2S

δθ1(x)δθ1(x′)
∆θ1(x

′)

with 2s′b = ∆θ1. Thus the action for s′b is the one that
could have been written down from the outset: it is that
of the fluctuations of θ1 around the bounce instanton dis-
cussed in section III A. To address the influence of this
class of fluctuations we can draw on the standard litera-
ture [31].

To perform the Gaussian integration over the fields s′b,
we form the expansion

s′b(x) =
∑

n

anϕn(x)

in terms of the eigenfunctions ϕn of the quadratic opera-
tor in the action for s′b. Now the action for s′b exhibits a
zero mode ϕ1 ∼ ∂θ1 due to translational invariance of the
action (the bounce can be positioned anywhere in space).
This zero mode must be accommodated by the introduc-
tion of a collective coordinate which in turn introduces
a Jacobian factor associated with the change of variables
from a1 to the collective coordinate. Furthermore, since
the instanton is a bounce, the zero mode ϕ1 has a node,
and hence there exists a ground state of V ′ with nega-
tive energy. This requires the contour for the integration
variable a0 to be deformed away from the real axis —
it takes a right turn at zero and heads in the negative
imaginary direction. In the context of the contour drawn
in Fig. 3, this is because we have to get back to the real
axis for θ1.

This deformation of the integration contour has a pro-
found consequence. While the contribution to the sub-
gap states from the bounce solution alone vanishes (recall
that the instanton was confined to the line Im θ1 = π/2,
so that cosh θ1 remains imaginary), the rotation of the
integration contour introduces a factor of i resulting in
an imaginary contribution to the Green function below
the gap. This is turn would signify a non-zero sub-gap
DoS. The mechanism operates in the related context of
Landau levels broadened by disorder and discussed by
Efetov and Marikhin [34] (see also an earlier paper by
Affleck [29]).

It is reassuring to note that the deformation of the in-
tegration contour, which is constrained to return to the
undeformed Bosonic contour, is unambiguous, and gives
rise to only positive definite contributions to the DoS.
Finally, as usual, since the contour only runs over half a
Gaussian for a0, its contribution yields a factor of 1/2.
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FIG. 5. Spatial dependence of the Grassmann zero mode
ϕ−

0 for ǫ = 0 and ζ = 0.5 together with the potential V−

(scaled by |∆|) that binds it.

This completes the discussion of the contribution to the
functional integral from the Bosonic degrees of freedom.
Finally we turn to the role of the Grassmann fluctua-
tions. Considering the supersymmetric structure of the
action, it is immediately clear that supersymmetry break-
ing must be accompanied by the existence of zero mode
in the Grassmann sector which restores the supersymme-
try. Indeed, an inspection of the potential V− identifies
a zero energy eigenfunction gapped from the others (see
Fig. 5) [35].

This situation may be compared with the analysis of
Andreev and Altshuler [36], who identified a stationary
phase saddle-point that determines the oscillatory part
of energy level correlation functions for normal diffusive
conductors. Again this saddle-point is more correctly a
manifold of points related by supersymmetry, but the fact
that it is spatially uniform guarantees that the spectrum
of Grassmann fluctuations is truly gapless.
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This zero mode indicates the existence of a degener-
ate manifold parameterized by a Grassmann coordinate.
The integration of unity over this Grassmann coordi-
nate yields zero, which ensures the necessary normaliza-
tion condition 〈Z[0]〉V,S = 1 is met. A non-zero result
can be obtained only if there is a prefactor (or source
term) that breaks supersymmetry. Making use of the
DoS source (14), we expand in P to find the lowest order
part quadratic in the Grassmanns (at order P 2)

str (σbf

3 ⊗ σph

3 ⊗ σcc

3 Q(x)) ≃
8i(sinhφ(x) − sinhφag) ×

(
ξ̄+(x)ξ+(x) + ξ̄−(x)ξ−(x)

)
.

From this result, we see that the local sub-gap DoS re-
mains non-zero only in the vicinity of the instanton where
the supersymmetry is broken.

Thus, taking into account Gaussian fluctuations and
zero modes, one obtains the non-perturbative, one in-
stanton contribution to the sub-gap DoS:

〈ν(ǫ)〉V,S
4ν

∼ (−i|K|)
∫
dx i(sinhφ(x) − sinhφag) |ϕ−

0 (x)|2
√
LSφ
ξ

exp
[
−4πνLw

√
D|∆|Sφ

]
, (25)

where the factor
√
LSφ/ξ represents the Jacobian as-

sociated with the introduction of the collective coordi-
nate [31], −i|K| is the overall factor arising from the
non-zero modes, and the Grassmann zero mode wave-
function ϕ−

0 is normalized such that
∫
dx|ϕ−

0 |2 = 1.

Here we have assumed that the s′′b integration only con-
tributes to the positive prefactor. We have checked this
numerically for a few cases and expect a general state-
ment could be made by moving to a different parameter-
ization.

Eq. (25) is the main result of this section. Note the
non-perturbative nature of the result, both in the cou-
pling constant g−1 of the σ-model, and the (dimension-
less) spin scattering rate ζ.

C. Sub-gap States in Dimensions d > 1

The calculation above was tailored to the considera-
tion of the quasi one-dimensional geometry. The gener-
alization to higher dimensions follows straightforwardly.
In particular, it is necessary to seek inhomogeneous solu-
tions of the saddle-point equation (16) where the gradient
operator must be interpreted as the higher dimensional
generalization. Generally, this equation must be solved
numerically. However, for energies ǫ in the vicinity of the
gap Egap, an analytic expression for the energy scaling
can be obtained.

Using the approximation to Vr[φ] (19) valid when
(Egap − ǫ)/|∆| ≪ 1, the exponential dependence of the
sub-gap DoS can be deduced in higher dimension. In
this limit, dimensional analysis of the cubic equation of
motion yields the scaling form

φ(r) − φag(ǫ) =
α

β
f(r/r0) ,

where r0 is the characteristic length defined by Eq. (22).
When substituted back into the action, one finds

that the DoS depends exponentially on the parameter
4πg(ξ/L)d−2Sφ where

Sφ = ad ζ
−2/3(1 − ζ2/3)−(2+d)/8

(
Egap − ǫ

|∆|

)(6−d)/4

. (26)

Here g = νDLd−2 denotes the bare dimensionless con-
ductance of the normal system, and ad is a numerical
constant (a1 = 8 4

√
24/5) In particular, the exponent

depends linearly on the energy separation from the gap
in two dimensions.

D. Numerics

To assess the validity of the approximations used in
obtaining the results above we have investigated numeri-
cally the DoS in the vicinity of the mean-field energy gap
using a numerical diagonalisation of a non-interacting
tight-binding Bogoluibov Hamiltonian with disorder in
both the on-site potential matrix elements and in the spin
impurity scattering potential. Taking a two-dimensional
lattice of size 22 × 22 site with an on-site disorder taken
from the range of ǫ ∈ [−3, 3] measured in units of the
hopping matrix element, |∆| = 1 measured in the same
units, and various strengths of the spin impurity poten-
tial, the DoS is shown in Fig. 6. Notice that, as the
strength of the spin impurity potential is increased, the
quasi-particle energy gap is quenched.
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FIG. 6. Variation of the DoS for a weakly disordered
two-dimensional tight-binding Bogoluibov Hamiltonian in the
presence of magnetic impurities. The data is shown for in-
creasing strengths of the magnetic impurity potential. At the
lowest energies the data points are shown as open circles to
emphasize the fine structure. Notice that in the phase where
there is predicted to be a gap in the mean-field theory the
DoS shows a tail extending in the sub-gap region. When the
quasi-particle energy gap is fully suppressed, the DoS shows
an upturn at very low energies which is compatible with the
renormalisation due to quantum interference processes pre-
dicted by the class D theory.

For the weakest magnetic impurity potential, we have
expanded the region in the vicinity of the mean-field en-
ergy gap. Fig. 7 shows a exponential scaling of the ‘sub-
gap’ DoS with an exponent which depends linearly on
energy as predicted by the theory above.
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FIG. 7. Variation of the DoS in the vicinity of the
mean-field energy gap. The data is shown as open circles
and is compared to an exponential fit of the data shown as a
solid curve. Notice that the DoS depends exponentially on the
energy difference as predicted by the two-dimensional version
of the theory.

IV. ZERO DIMENSIONAL PROBLEMS AND

UNIVERSALITY

In the previous section we considered the instanton
contribution to the sub-gap DoS in the infinite system.
For completeness let us now consider the zero dimen-
sional case that obtains when r0, the size of the instan-
ton, exceeds the system size L, which will happen when ǫ
approaches close enough to Egap from below in any finite
system. In this limit one can clearly not fit an instanton
inside the system. Leaving aside the practical relevance
of this situation, theoretical motivation is provided by a
recent paper [8] that explored this regime using a random
matrix analysis.

However, before turning to the consideration of the
zero-dimensional limit of the present problem let us first
try to draw some intuition from a closely related in-
vestigation of a different system comprised of a normal
quantum dot contacted to a superconducting terminal
(as shown in Fig. 8). In such a geometry it is well es-
tablished (see e.g. Ref. [37]) that the proximity effect
induces a gap in the DoS of the normal dot. Indeed, in
Ref. [37], the integrity of the gap is proposed as a signa-
ture of irregular or chaotic dynamics inside the dot. Now
near the gap edge the DoS of the dot takes the singular
form

ν(ǫ > Egap) ≃ 1

πLd

√
ǫ− Egap

∆3
g

, (27)

with Egap = cNδ and ∆g = c′N1/3δ, where c ≈ 0.048
and c′ ≈ 0.068, δ = 1/Ldν denotes the single particle
level spacing, and N is the number of fully transmitting
channels in the contact.

However, the location of the gap edge relies on a mean-
field analysis of the coupled system. In Ref. [15] Vavilov
et al. have argued that optimal fluctuations of the impu-
rity potential give rise to gap fluctuations. The hypoth-
esis introduced in Ref. [15] is that the spectral statistics
near a gap edge are universal. This allows a random ma-
trix theory analysis of gap fluctuations and leads to the
following expression for the sub-gap DoS,

ν(ǫ < Egap)

ν
∼ exp

[
−2

3

(
Egap − ǫ

∆g

)3/2
]
. (28)

Now the AG mean-field solution for a superconducting
quantum dot with magnetic impurities also predicts the
existence of a square root edge (see Eq. (6) and inset of
Fig. 4). Then, when recast in the form of Eq. (27), it
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is pertinent to ask whether the expression for the sub-
gap DoS coincides with Eq. (28) in the zero dimensional
limit. This is the situation addressed in Ref. [8].

In the following we will show that the universal re-
sult (28) is explicitly recovered by the present theory.
Moreover, in doing so, we will expose the origin of the
universal structure reported in Ref. [15] and describe its
implications for universality of the d > 0 problem.

S N

FIG. 8. Metallic quantum dot coupled to superconducting
leads

A. Superconducting dot with magnetic impurities

Let us therefore consider explicitly the action of a su-
perconducting grain in the presence of a weak magnetic
impurity potential. When r0 ≫ L only the zero spatial
mode contributes significantly to the action (13). In this
limit, the action assumes the zero dimensional form

S[Q] =
iπ

2δ
str [(ǫ−σ

cc

3 + |∆|σph

2 )σph

3 Q]

+
π

24τsδ
str (Qσph

3 ⊗ σsp)
2
, (29)

where, as usual, δ denotes the single-particle level-
spacing. As in the higher dimensional problem, a varia-
tion of the action with respect to Q obtains a mean-field
equation, now without spatial variation. Parameterizing
the saddle-point equation as in section II D, we obtain the
zero-dimensional Usadel or AG mean-field equation (15)

2i

(
cosh θ̂ − ǫ

|∆| sinh θ̂

)
− ζ sinh(2θ̂) = 0.

From this equation, we can identify the usual AG solu-
tion which in turn recovers the AG phenomenology.

The inclusion of bounce configurations in the previ-
ous calculations was based upon the observation that,
although the contribution they make is exponentially
small, they are the least action configurations on the

part of the contour that gives a finite sub-gap DoS. In
the zero-dimensional case we are spared having to think
about the problem in function space. The action is pro-
portional to the potential of Fig. 2. The correct contour
thus passes through the maximum of the potential (mini-
mum of the action) corresponding to the usual AG saddle
point, and turns away from the real φ axes (i.e. the line
Im θ1 = π/2) at the minimum of the potential

φ0d(ǫ) = φag(ǫ) +
2α

3β

√
Egap − ǫ

|∆| ,

(marked in Fig. 2). This part of the contour, parallel to
the imaginary axes, gives a contribution to the DoS, and
the second saddle point is in fact a maximum on this por-
tion by analyticity. Following the same arguments as in
section III A, this solution is inaccessible to the Fermionic
contour. We find that the sub-gap DoS near Egap in the
zero-dimensional case scales as

ν(ǫ < Egap)

ν
∼ exp

[
−4π

27

|∆|
δ

α3

β2

(
Egap − ǫ

|∆|

)3/2
]
,

where α and β are the coefficients defined in Eq. (20).
We note that the general result for the energy depen-
dence of the exponent written down in section III C for
dimensions d ≥ 1 applies also for d = 0.

To establish contact with the universal result given in
Eq. (27) it is helpful to recast the result in a modified
form. To do this we note that, in the vicinity of the
mean-field gap edge, the DoS can be expanded as [14]

νag(ǫ > Egap)

4ν

≃
√

2

3
ζ−2/3(1 − ζ2/3)−1/4

(
ǫ− Egap

|∆|

)1/2

.

Then, if we define

∆−3/2
g ≡ 4π

δ

√
2

3|∆|ζ
−2/3(1 − ζ2/3)−1/4 ,

the mean-field DoS can be brought to the form of
Eq. (27), and the sub-gap DoS takes the universal
form [38]

ν(ǫ < Egap)

ν
∼ exp

[
−4

3

(
Egap − ǫ

∆g

)3/2
]
. (30)

Leaving aside a spurious (yet systematic — see below)
factor of 2 [39], the sub-gap DoS obtained above coin-
cides with the universal expression shown in Eq. (28).

Once again, to assess the validity of the approxima-
tion scheme that leads to the universal result above, we
have looked for the scaling in a numerical investigation of
a random matrix Hamiltonian with the same symmetry.

13



In the sub-gap region, Fig. 9 shows a good fit of the DoS
to the predicted exponential scaling.

The rescaling of the DoS above and the appearance of
the universal form suggests that we should revisit the d-
dimensional result and look for a similar rescaling. From
Eq. (26) it is straightforward to verify that in this case

ν(ǫ < Egap)

ν
∼ exp

[
−ãd

(
r0(ǫ)

L

)d (
Egap − ǫ

∆g

)3/2
]

,

where ãd represents some numerical constant, and r0 is
the characteristic length defined by Eq. (22). Finally, by
defining

∆̃−3/2
g (ǫ) ≡ δ

δ̃(ǫ)
∆−3/2
g ,

where δ̃(ǫ) = 1/(νrd0(ǫ)) is the level spacing inside a re-
gion of size r0, the volume dependent prefactor can be
absorbed into the expression and DoS can be brought to
the form

ν(ǫ < Egap)

ν
∼ exp



−ãd
(
Egap − ǫ

∆̃g

)3/2


 ,

revealing a simple relation between the d = 0 and d > 0
problems.

The coincidence of Eqs. (28) and (30) indeed suggests
that gap fluctuations are universal. To expose the origin
of the universal scaling within the present formalism, let
us consider the quantum dot geometry of Fig. 8 within
the σ-model scheme.
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FIG. 9. DoS for a random matrix Bogoluibov Hamiltonian
with a magnetic impurity component. Data is shown for three
different ensembles where only the rank of the matrix is varied
(M = 50, 100 and 200). The DoS has been rescaled by the
average level spacing so that, above the mean-field gap edge,
the data collapse. As predicted, with this rescaling, the width
of the tail region decreases with increasing size of the random
matrix. The data set for M = 200 is fitted to an exponential
with a 3/2 power. The corresponding fit is then made with
no adjustable parameters to the other two data sets.

B. Quantum dot contacted to a superconductor

Following Ref. [15], let us consider a normal quantum
dot contacted to a bulk superconducting terminal with
order parameter ∆. Taking N fully open channels be-
tween the dot and the lead, it is straightforward to show
that, in the zero-dimensional limit, the effective action of
the hybrid SN system takes the form

S[Q] = −iπǫ+
2δ

str [σcc

3 ⊗ σph

3 Q]

−N
2

str [ln(1 +QLQ)] , (31)

where QL represents the Q-matrix of the superconduct-
ing terminal (see below), and Q represents the zero-
dimensional supermatrix field within the normal region.
The term containing the logarithm describes the coupling
to the lead — see Ref. [20] for a derivation. Even for a
diffusive dot, we note that retaining the full logarithm
is the essential element in the correct treatment of the
zero-dimensional limit that obtains when D/L2 ≫ Nδ,
a point to which we will return later. For a clean super-
conducting lead, at energies ǫ much less than the bulk
superconducting gap ∆, one can set QL = σph

1 .

As usual, to obtain the mean-field expression for the
DoS it is necessary to minimize the action with respect to
variations in Q. Doing so, one obtains the saddle-point
equation

i
πǫ+
2δ

[Q, σcc

3 ⊗ σph

3 ] +
N

2
[Q, (1 +QLQ)−1QL] = 0

As usual, applying the Ansatz that the saddle-point so-
lution is contained within the diagonal parameterization,

Q = σcc

3 ⊗ σph

3 cosh θ̂ + iσph

1 sinh θ̂,

the saddle-point equation takes the form

πǫ

δ
sinh θ̂ +

N

2

cosh θ̂

1 + i sinh θ̂
= 0. (32)

A straightforward analysis of the symmetric saddle-
point solution leads to the mean-field result for the
DoS shown in Eq. (27) (remembering that now ν(ǫ) =
2ν Re cosh θmf(ǫ) as there are no spin degrees of freedom
in this problem). In particular, one can straightforwardly
determine Egap by setting cosh θmf to be imaginary. Thus
sinh θmf ≡ −ib for real b and (32) gives

ǫ(b) =
Nδ

2π

1

b

√
b− 1

b+ 1
.

The extremum of this function gives the largest en-
ergy corresponding to a real value of b. This occurs at

14



b = (1+
√

5)/2 = 1+ γ, where γ is the golden mean, and
yields Egap = (Nδ/2π)γ5/2 ≈ 0.048Nδ as required.

As with the case of magnetic impurities, to explore
the influence of gap fluctuations, it is necessary to seek
the symmetry broken saddle-point configuration. How-
ever, for reasons outlined below, it is possible to identify
a pattern which implies the universality of the resulting
analysis:

C. Universalities

At first glance the situations considered in the two pro-
ceeding sections are rather different. The actions (29)
and (31) would seem not to have much in common. How-
ever, a simple and general argument may be established
to reveal the universal character. As before, defining
θmf(ǫ) = iπ/2+φmf(ǫ), the mean-field DoS for the SN de-
vice is given by νmf(ǫ) = 2ν Im sinhφmf(ǫ), where φmf is
determined by the condition δS/δφ[φ = φmf] = 0. Since
the DoS displays a square root singularity described by
Eq. (27), the (saddle-point) action near the edge is con-
strained to be of the form

S[φ̂] = −k str

[
1

3
ŝ3 +

(
δ

2π

)2(
ǫ+ − Egap

∆3
g

)
ŝ

]
,

where ŝ(ǫ) = sinh φ̂(ǫ) − sinh φ̂mf(Egap). Here, the ele-

ments φ̂ = diag(φbb, φff) and ŝ = diag(sbb, sff) are diag-
onal in the superspace. (As one may check, a variation of
the action for ǫ > Egap obtains the symmetric mean-field
solution

sbb = sff = i
δ

2π

√
ǫ− Egap

∆3
g

which in turn recovers the expression (27) for ν(ǫ).)
Moreover, since the term containing ŝ is linear in the
energy, we can determine the value of k from the knowl-

edge that ǫ appears in the action as (2πǫ+/δ) sinh φ̂. (It
is this term that can more generally contain the Dyson
index ‘β’, which therefore appears in the general expres-
sion for gap fluctuations described in Ref. [15].) In the
present case, we thus have k = (2π∆g/δ)

3.
Now, as discussed in the previous section, when ǫ <

Egap there exists two saddle-point solutions at

s± = ± δ

2π

√
Egap − ǫ

∆3
g

.

As before, one of these solutions (s−(ǫ) ; φmf(ǫ)) is asso-
ciated with the conventional symmetric mean-field solu-
tion while the other represents a second saddle-point ac-
cessible only to the Bosonic contour. Taking this second,
symmetry broken saddle-point into account (i.e. setting
sbb = s+ and sff = s−), one obtains the saddle-point
action

S[φ̂] =
4

3

(
Egap − ǫ

∆g

)3/2

.

It is this symmetry broken saddle-point which controls
the sub-gap DoS and leads to the universal scaling form
proposed in Ref. [15]. This generalizes the arguments
applied to the superconducting dot with magnetic impu-
rities.

D. Discussion

Following on from this discussion, to conclude this sec-
tion, let us make two remarks which bare on the univer-
sality of the general scheme. The first of these remarks
concerns the integrity of the scaling of the sub-gap DoS
when different impurity distributions are taken into ac-
count. The second remark concerns the extension of the
ideas above to the consideration of the hybrid SN system
beyond the zero-dimensional regime.

Firstly, for the superconductor with magnetic impu-
rities, one can generalize the arguments above to show
that the energy scaling of the sub-gap DoS even in the
d-dimensional case is insensitive to the nature of the ran-
dom impurity distribution. This is in contrast to Lifshitz
band tail states in semi-conductors where the energy scal-
ing depends sensitively on this distribution. To under-
stand this, let us suppose that the distribution of mag-
netic impurities JS(r) is not Gaussian δ-correlated, as we
assumed throughout, but obeys some arbitrary statistics
defined by a probability functional P [JS(r)]. When the
ensemble average over JS(r) is performed one would ob-
tain in the Ψ-field action a contribution of the form

ln

〈
exp

[
−i
∫
dr Ψ̄JS · σspΨ

]〉

P

≡ C[Ψ̄σspΨ(r)] ,

which defines C[· · ·], the generating functional of con-
nected correlators of JS(r). Though this is in general
a very complicated and indeed non-local functional of
Ψ̄σΨ(r), one can in principle find a local Q-field action by
including pairings only at coincident points, justified by
the assumption (ℓ/ξ)d ≪ 1 about the non-magnetic dis-
order. The mean-field description of this system then fol-
lows from the homogeneous solution of the saddle-point
equation, an Usadel equation like (15) with some poten-
tial. Generally this potential will have the same char-
acteristics as the real potential of (17) plotted in Fig. 2
on the line Im θ1 = π/2. The central maximum is due
to the |∆| term; the upturn at large φ arises from the
small pair-breaking part, and the asymmetry comes from
the ǫ term. Now, if mean-field theory leads to a square-
root singularity in the DoS (a circumstance which can be
avoided only by a special tuning of parameters), one can
expect that increasing the energy leads to the maximum
merging with one of the minima according to
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Vr[φ] ≃ −α
(
Egap − ǫ

|∆|

)1/2

(φ− φmf)
2 + β(φ − φmf)

3

with α and β chosen appropriately. Then the analysis
of section III applies. In particular the scaling of the
exponent with ((Egap − ǫ)/|∆|)(6−d)/4 is expected to be
universal and independent of the details of the magnetic
impurity potential.

Now let us turn to the generality of the present scheme
in describing ‘gap fluctuations’ in extended hybrid su-
perconductor/normal systems. The latter has been dis-
cussed in a very recent paper by Ostrovsky et al. [40]. In
this work, the authors developed an instanton approach
analogous to that employed in the magnetic impurity
system here to estimate the profile of gap fluctuations
in the d-dimensional SNS system. Now from the dis-
cussion above, it is possible to expose the relation be-
tween these two works: in the SNS system, the energy
gap induced in the normal region due to the proximity
effect is determined by the Thouless energy defined as
ET ∼ 1/τdwell, where τdwell is the time required for elec-
trons in the normal region to feel the presence of the
superconductor [37]. The Thouless energy is determined
by ET ∼ min{D/L2,ΓNδ} where Γ is the transparency
of the contact to the superconductor (Γ = 1 in the anal-
ysis of the zero-dimensional system above).

In the diffusive limit D/L2 ≪ ΓNδ, at the mean-
field level, the position of the quasi-particle energy gap is
found by solving the Usadel equation with the appropri-
ate boundary conditions [41]. As a result one obtains a
square root singularity in the DoS. In this case the mean-
field solution is itself inhomogeneous. The sub-gap cor-
rection is found by identifying a second inhomogeneous
instanton configuration that breaks supersymmetry at
the level of the action [40]. Both solutions merge at the
mean-field gap. Now, following the arguments above, it
is simple to see how the phenomenology of Ref. [40] fits
into the same general scheme: in this case the relevant
coordinate of Q interpolates between the inhomogeneous
mean-field solution and the instanton. The result is a
sub-gap DoS which assumes the familiar form of Eq. (30),
with appropriately defined geometry dependent param-
eters Egap and ∆g. Naturally the introduction of d⊥
transverse dimensions gives the expected energy depen-
dence of (Egap − ǫ)(6−d⊥)/4 in the exponent.

In the opposite limit D/L2 ≫ ΓNδ (not considered
in Ref. [40]), gradients of Q are heavily penalized and
the coupling to the lead must be retained in its ‘log-
arithmic form’, with Q being taken as constant in the
dot. (Indeed, the logarithm is crucial to reproduce even
the mean-field expression for the DoS (27) with the cor-
rect coefficients.) This is the true zero-dimensional limit
treated above. As we have seen, with this action, one re-
covers the known universal expression for the spectrum
of gap fluctuations below the mean-field edge.

V. CONCLUSIONS

To conclude, we have developed a quasi-classical field
theory describing a superconductor in the dirty limit
with weak magnetic impurity scattering. The Abrikosov-
Gor’kov mean-field treatment of this system, showing a
diminished but hard gap in the DoS, can be straightfor-
wardly recovered as a homogeneous saddle-point of the
effective action. Where zero DoS is predicted by the
mean-field theory, there exist spatially inhomogeneous
saddle-point configurations that break supersymmetry at
the level of the action. A careful analysis of fluctuations
around these instanton configurations demonstrate how
supersymmetry is restored by a manifold of equivalent
configurations parametrized by a Grassmann coordinate,
but more importantly how the configurations give rise
to a finite, though exponentially small, DoS. In contrast
to band tail states in semi-conductors, the quasi-particle
nature of the sub-gap states leads to universality of their
properties.

Finally, let us remark on the connection of the re-
sults presented above to related problems in the liter-
ature. The resulting expression for the DoS (26) was
found to be non-perturbative in the σ-model coupling
1/g, which measures the strength of non-magnetic disor-
der. We note that other non-perturbative results in dis-
ordered systems have been obtained by related instanton
calculations. As well as the investigation of tail states in
semi-conductors [28], a supersymmetric field theory was
developed by Affleck [29] (see also Refs. [34]) to inves-
tigate tail states in the lowest Landau level. There it
was shown that tail states correspond to instanton con-
figurations of the Ψ-field action (c.f. Ref. [28]). It is also
interesting to compare the present scheme with the study
of ‘anomalously localized states’ [42] (see also, Ref. [32]).
There one finds that long-time current relaxation in a
disordered wire is also associated with instanton config-
urations of the σ-model action. Finally, a Lifshitz argu-
ment has been applied on the level of the Usadel equation
in the study of gap fluctuations due to inhomogeneities
of the BCS interaction [43].

Although we have focussed largely on the question of
tail states below the mean-field quasi-particle gap of a
superconductor with magnetic impurities, we expect the
instanton approach developed here to be more widely ap-
plicable. Indeed, in this work we have shown the inti-
mate connection between the study of sub-gap states in
the magnetic impurity problem and gap fluctuations in
hybrid superconductor/normal structures. Furthermore,
the same instanton approach describes gap fluctuations
in superconductors with a quenched inhomogeneous dis-
tribution of the BCS coupling constant [43], as well as
quasi-two dimensional superconducting films subject to
strong in-plane magnetic fields [44]. In both cases the lat-
ter are described by a mean-field theory which assumes
the Abrikosov-Gor’kov form.

More speculatively, it seems likely that the same gen-
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eral scheme can be employed to study the influence of
optimal fluctuations on the nature of bulk transitions.
For example, in the present system, the transition to
bulk superconductivity with reducing magnetic impu-
rity concentration will be preempted by the nucleation
of superconducting islands or droplets within the metal-
lic/insulating phase (c.f. Ref. [45]). Similarly, the Stoner
transition to a bulk itinerant ferromagnet in a disordered
system will be mediated by the formation of a droplet
phase in which islands become ferromagnetic [46]. In
both cases, we expect these ‘droplet phases’ to be associ-
ated with inhomogeneous instanton configurations of the
corresponding low-energy action.
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