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Polarized Fermi condensates with unequal masses: Tuning the tricritical point
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We consider a two-component atomic Fermi gas within a mean-field, single-channel model, where
both the mass and population of each component are unequal. We show that the tricritical point at
zero temperature evolves smoothly from the BEC- to BCS-side of the resonance as a function of mass
ratio r. We find that the interior gap state proposed by Liu and Wilczek is always unstable to phase
separation, while the breached pair state with one Fermi surface for the excess fermions exhibits
differences in its DoSs and pair correlation functions depending on which side of the resonance it
lies. Finally, we show that, when r & 3.95, the finite temperature phase diagram of trapped gases
at unitarity becomes topologically distinct from the equal mass system.

Recent advances in the ability to manipulate and con-
trol ultra-cold atomic vapors have provided a unique ex-
perimental system in which to explore pairing phenom-
ena. Following the successful realization of the crossover
from the BCS to the Bose-Einstein condensed phase [1],
attention has turned to the consideration of more exotic
Fermi superfluids. A subject that has attracted partic-
ular interest is that of Fermi condensates with imbal-
anced spin populations [2, 3], having relevance to QCD
and magnetized superconductors [4]. Equally intrigu-
ing is the case in which both the mass and population
of each fermionic species in the condensate are unequal.
Indeed, the realization of Feshbach resonances in Fermi-
Bose mixtures [5], and the predicted stability of diatomic
molecules close to resonance over a wide range of mass
ratios [6], suggest that such superfluid mixtures should
be experimentally accessible.

Previous studies [7, 8, 9, 10] have raised several impor-
tant issues unique to Fermi condensates with spin and
mass imbalances. Firstly, it has been proposed that the
breached pair (BP) state, where the superfluid and excess
fermionic states phase separate in momentum space, can
possess excess fermions with two Fermi surfaces (BP-2)
— the interior gap state [7]. In the case of equal masses,
the BP state can only have one Fermi surface (BP-1).
However, it is still unclear whether BP-2 can become sta-
ble for large mass ratios near the Feshbach resonance [11],
or whether it is always unstable to phase separation in
real space as in the weak coupling limit [12]. Secondly, al-
though there have been studies of the zero temperature
phase diagram for the homogeneous gas with unequal
masses [8, 9], so far no tricritical point (such as that dis-
cussed in the equal mass system [13, 14]) has been identi-
fied. It is natural to ask whether such a tricritical point is
generic and, if so, how it evolves with mass ratio. Finally,
it has been shown that trapped Fermi gases with unequal
masses can exhibit spatial phase separation at zero tem-
perature that differs qualitatively from that of the equal
mass case [10]. Whether and how such features extend
to finite temperatures remains unanswered. Focussing
on the homogeneous system, all three issues will be ad-

dressed in this work. To focus our discussion, we will
address the phase boundaries between spatially homo-
geneous phases, leaving the potential for Fulde-Ferrell-
Larkin-Ovchinnikov phases [15] to future investigation.

Referring to wide (viz. entrance-channel dominated)
Feshbach resonances [16], we restrict attention to a
single-channel Hamiltonian with contact potential:

Ĥ −
∑

σ=↑,↓

µσn̂σ =
∑

kσ

(ǫkσ − µσ) c†kσckσ

+
g

V

∑

k,k′,q

c†
k+q/2↑c

†

−k+q/2↓c−k′+q/2↓ck′+q/2↑ . (1)

Here, ǫkσ = k2

2mσ

(~ = 1), g is the interaction strength, V
is the volume, and we allow the mass mσ and chemical
potential µσ of each spin to be different, with average
chemical potential µ = (µ↑ + µ↓)/2 and ‘Zeeman’ field
h = (µ↑ −µ↓)/2. To obtain the topology of the phase di-
agram spanning the BCS-BEC limits for unequal masses
(including the locus of the finite-temperature tricritical
point at which the transition between the superfluid and
normal phases switches from first- to second-order), we
will develop a mean-field analysis of the system analo-
gous to that presented for equal masses [13]. While such
a treatment is not expected to be quantitatively correct
for all interaction strengths, it should provide a reliable
qualitative description even close to unitarity.

Setting ǫk+ = k2

2mr

, 2
mr

= 1
m↑

+ 1
m↓

, ǫk− = ǫk+
(r−1)
(r+1) ,

and r =
m↓

m↑
, the free energy density can be expressed as

Ω0(µ, h) = min
∆

{

−∆2

g

+
1

V

∑

k

[

ξk − Ek − 1

β

∑

σ

ln
(

1 + e−βEkσ

)

]}

, (2)

where min∆ gives the global minimum with respect to ∆
(to be calculated numerically). Here, ξk = ǫk+ − µ and,
defining Ek =

√

ξ2
k + ∆2, the quasiparticle energies are

given by Ekσ = Ek ∓ (h − ǫk−). The free energy (2)
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FIG. 1: (Color online) Zero temperature phase diagrams for
different mass ratios r = m↓/m↑, where a positive polariza-
tion m corresponds to an excess of particles with spin ↑. All
mass ratios exhibit the same three phases: the normal state
(N), the spatially homogeneous superfluid (SFM), and phase
separation (PS) between normal and superfluid states in real
space. The region of SFM expands with increasing r. The
boundaries enclosing the PS region are all first-order, while
the tricritical point is represented by a circle. The line defined
by m/n = 0 corresponds to the usual BCS-BEC crossover.

differs from that of the equal mass system only through
the appearance of a momentum-dependent contribution,
ǫk−, to the Zeeman term which leads to the symmetry
(h, r) 7→ (−h, 1/r). We introduce the s-wave scatter-

ing length a via the prescription mrV
4πa = V

g +
∑k0

k
1

2ǫk+
,

where the UV cutoff k0 can be sent to infinity at the end
of the calculation. With experiments performed at fixed
density, µ and h are determined from the total density
n ≡ n↑ + n↓ = −∂Ω0/∂µ and the population imbalance
m ≡ n↑−n↓ = −∂Ω0/∂h [22]. Note that the stability cri-
terion adopted in Refs. [8, 9] corresponds only to finding
local minima with respect to ∆ in Eq. (2) and thus will
not correctly locate a first order transition. The presence
of such a transition implies a region of phase separation
in real space if n and m are held fixed [12]. The two
phases in question are a normal phase with ∆ = 0 and a
superfluid phase with ∆ 6= 0, which is less magnetized as
pairing tends to enforce equality of populations.

Beginning with zero temperature (Fig. 1), we find that
the basic structure of the phase diagram ( 1

kF a , m
n ) for

unequal masses mirrors that of the equal mass system
[23]. Phase separation (PS) is found between the normal
(N) and superfluid states. On the BCS side the super-
fluid component is always unpolarized, while the BP or
magnetized superfluid (SFM) state exists for sufficiently
strong interaction and eventually undergoes a second-
order transition to the fully-polarized normal state be-
yond the tricritical point. However, the position of the
tricritical point is dramatically shifted, with the regions
of PS and SFM shrinking and expanding, respectively, as
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FIG. 2: (Color online) Evolution of the tricritical point
(1/kF a, h/εF )tric as a function of mass ratio r with h > 0.
The values of r = 1, the equal mass case, and r = 3, where
the chemical potential µ changes sign, are explicitly marked.
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FIG. 3: (Color online) Quasiparticle dispersions Ek↑, Ek↓

together with the majority species (↑) projection of the
DoS(ω) = − 1

π

P

k
ℑ[G11(k, iǫn = ω + iη)] for mass ra-

tios r = 0.5 (upper panels) (∆/|µ| = 0.25, h/|µ| = 1.06,
1/kF a = 2.93, m/n = 0.12) and r = 10.0 (lower panels)
(∆/µ = 0.85, h/|µ| = 1.44, 1/kF a = −0.07, m/n = 0.16).

r increases (in qualitative agreement with Refs. [8, 9, 10]).

We can gain further insight into the phase diagram
by examining the behavior of the tricritical point as a
function of mass ratio, r. As shown in Fig. 2, the tri-
critical point, determined as the point at which both the
quadratic and quartic terms in the Landau expansion of
the free energy (2) vanish, evolves smoothly from the
BEC to BCS limits, with (h/εF , 1/kF a)tric → (∞,∞) as
r → 0, and (h/εF , 1/kF a)tric → (22/3,−∞) as r → ∞.
Moreover, as in the equal mass system, the tricriti-
cal point always corresponds to a fully-polarized state,
m/n = 1 [24]. It is interesting to note (Fig. 2) that the
chemical potential, µ, at the tricritical point becomes
positive for r ≥ 3, hinting at the possibility of a BP-2
state. However, a mean-field analysis of the phase bound-
aries in the limit r → ∞ shows that only the BP-1 state
is ever stable. As in the weak-coupling limit [12], phase
separation is always favored over the BP-2 state [25].
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FIG. 4: (Color online) Averaged momentum distribution for
each spin state nk↑,↓ and correlation function C↑↓ for r =
0.5 (left panels) and r = 10.0 (right panels) and the same
parameter values used in Fig. 3.

Even though the BP state only ever possesses one
Fermi surface, the associated quasiparticle excitation
spectrum can display minima at non-zero k, a property
which is also characteristic of the BP-2 phase. As demon-
strated in Fig. 3, while the spectrum remains gapless for
both r = 0.5 and r = 10 (i.e., the density of states,
DoS(ω), is finite at ω = 0), the excitation spectrum for
r = 10 also exhibits stationary points at non-zero k re-
sulting in a square-root singularity in the associated DoS.
Such a singularity may be regarded as ‘BCS-like’, while
its absence for r = 0.5 is ‘BEC-like’ (cf. quasiparticle ex-
citation spectra at the BCS-BEC crossover in the equal
mass case [17]). More generally, DoS singularities in the
BP state only occur for r > 1, where the species with
the smaller mass is in the majority. When µ > 0, the
singularities exist for all polarizations, but when µ < 0,
they are restricted to the region around m = 0 where
∆/|µ| > 2

√
r/(r − 1) [26]. Such dramatic differences in

the DoS should be accessible experimentally using optical
excitations [18].

Further signatures of breached pairing are visible in the
momentum distribution, nkσ, and correlation function,

C↑↓(k1,k2) = 〈n̂k1↑n̂k2↓〉 − 〈n̂k1↑〉〈n̂k2↓〉

= δk1,−k2

∆2

4E2
k1

[1 − Θ(−Ek↑) − Θ(−Ek↓)]
2 .

Referring to Fig. 4, breached pairing is characterized by a
phase separation in momentum space between the excess
of majority species ↑ and the minority species ↓ involved
in the superfluid state. In both cases, the correlation
function C↑↓ shows a ‘hole’ for momenta less than the
Fermi momentum of the majority quasiparticles. This
hole at small momenta is reminiscent of the Pauli block-
ing observed in the closed-channel molecule of the 40K
Feshbach resonance [19] where there is always an inherent
particle number asymmetry in the open channel, even in
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FIG. 5: (Color online) Phase diagrams in the (T/µ, h/µ)-
plane for different mass ratios r at unitarity 1/kF a = 0. Mass
ratio r = 6.7 corresponds to the case of 6Li-40K mixtures. The
transition between the N and SF phase can be first (red) or
second order (black solid), separated by the tricritical point.
The dashed black line describes the second order transition
in the region where the true transition is first order. Lines of
constant gradient T/h represent the trajectory traveled from
the center to the edges of the trap, examples of which are
shown by the arrows (a-e). The starting points on these lines
are the values of (T/µ, h/µ) at the trap center.

the usual BCS-BEC crossover. The correlation function
C↑↓ can also directly probe the sign of µ: for µ > 0 we
have a peak beyond the blocked region, as shown in the
r = 10.0 case, provided ∆/µ > |h/µ+(1− r)/(1+ r)|. In
principle, such a feature can be detected experimentally
using noise correlations [20].

Turning to finite temperature, the phase diagram for
unequal masses in the homogenous system is qualitatively
similar to the equal mass case, but the topology of phases
within a trap can be different. A study of 6Li-40K mix-
tures at zero temperature [10] has already revealed that
the unequal mass case offers a richer variety of phase-
separated states. In addition to configurations where
there is a superfluid core surrounded by the normal state
(as in the equal mass case), the superfluid region can oc-
cupy a shell sandwiched between a normal inner core and
a normal outer shell with opposite polarizations. To in-
vestigate the effects of temperature T and different mass
ratios r in the trap geometry, we restrict ourselves to
the case in which the local density approximation can
be applied. Thus, assuming each species experiences the
same trapping potential V (r), the effects of the trap can
be included in the spatially-varying chemical potential,
µ − V (r), while the term h remains fixed.

In Fig. 5, we plot mean-field phase diagrams at uni-
tarity as a function of T/µ and h/µ. Note that Nozières-
Schmitt-Rink fluctuations will not alter these diagrams
since corrections only enter into the density, n, and the
polarization, m [21]. We restrict ourselves to the case
where µ > 0 because this is enough to completely en-
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compass the SF-N phase boundaries, even though a fully-
polarized normal state obviously exists for −|h| < µ < 0.
While the equal mass (r = 1) phase diagram is symmet-
ric around h = 0 as expected, we see that lowering or
increasing r translates the superfluid dome to the left or
right, respectively. For sufficiently small translations, we
have the ordinary trapped case of a superfluid core with
a first (arrow a) or second (arrow b) order transition to
the surrounding normal state. However, once r & 3.95,
the superfluid region has shifted entirely to the h > 0
plane, as shown for r = 6.7 and r = 10 [27]. Provided
h/µ is sufficiently small at the trap center, this naturally
leads to a superfluid shell structure where the superfluid
phase is sandwiched between a ‘heavy’ normal core and
an outer ‘light’ normal phase. This structure can either
have two first-order SF-N phase boundaries (d), one first
and one second (c), or two second-order phase bound-
aries (e), depending on the value of T/h. The case con-
sidered in Ref. [10] corresponds to the T/µ = 0 axis in
the r = 6.7 phase diagram, and is thus an example of
category d. Note, however, that one tricritical point van-
ishes when r is further increased (corresponding to the
point where (1/kF a)tric changes sign in Fig. 2), so that
‘d-type’ SF shells are then no longer possible.

In conclusion, we have investigated the mean-field
phase diagram of a polarized Fermi condensate with un-
equal masses. We have shown that the zero temperature
tricritical point smoothly crosses over from 1/kF a > 0 to
1/kF a < 0 as r increases, but the interior gap state is
never stable, even in the limit of infinite r. However, dif-
ferences in the BP states do show up in the DoS and pair
correlations. Finally, we show how the phase diagram of
trapped gases depends on r and T , including how one
obtains superfluid shells for r & 3.95.
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